Abstract

Previous work at the Gas Turbine and Transmissions Research Center (G2TRC) has highlighted the need for an adequate computational model, which can appropriately model the oil shedding behavior from bearings. Oil can break up forming droplets and ligaments, subsequently forming thin and thick films driven by both gravity and shear. Our previously published work using openfoam successfully coupled the Eulerian thin film model (ETFM) with the discrete phase model (DPM) (Nicoli et al., 2019, “A New OpenFOAM Solver Capable of Modelling Oil Jet-Breakup and Subsequent Film Formation for Bearing Chamber Applications,” ASME Paper No. GT2019-90264.). In this paper, the previously developed ETFM-DPM capability is, for the first time, extended to an aeroengine representative bearing chamber configuration. The configuration matches that of a simplified aeroengine bearing chamber that has been investigated by researchers at the Gas Turbine and Transmissions Research Center (G2TRC). Numerical investigations are conducted for three different shaft speeds, namely, 5000, 7000, and 12,000 rpm, at two different oil flow rates: 7.3 liters/minute and 5.2 liters/minute. CFD results are validated against existing experimental data for the two lower shaft speeds. Evaluation of computed mean film thickness shows excellent agreement with the experimental data. Results show that there is a diminishing reduction of film thickness with an increasing shaft speed. The computational study allows investigation of oil residence time in the annulus near the bearing. Residence time is seen to reduce with increasing shaft speed and with increasing oil flow rate. This CFD investigation represents the first successful fully coupled two-way ETFM-DPM investigation into the droplet generation process within a bearing chamber application, establishing a firm foundation for future aeroengine bearing chamber modeling.

References

1.
Glahn
,
A.
,
Kurreck
,
M.
,
Willmann
,
M.
, and
Wittig
,
S.
,
1996
, “
Feasibility Study on Oil Droplet Flow Investigations Inside Aero Engine Bearing Chambers—PDPA Techniques in Combination With Numerical Approaches
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
749
755
.10.1115/1.2816990
2.
Gorse
,
P.
,
Dullenkopf
,
K.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2008
, “
An Experimental Study on Droplet Generation in Bearing Chambers Caused by Roller Bearings
,”
ASME
Paper No. 43147.10.1115/43147
3.
Santhosh
,
R.
,
Hee
,
J. L.
,
Simmons
,
K.
,
Johnson
,
G.
,
Hann
,
D.
, and
Walsh
,
M.
,
2017
, “
Experimental Investigation of Oil Shedding From an Aero-Engine Ball Bearing at Moderate Speeds
,”
ASME
Paper No. GT2017-63815.10.1115/GT2017-63815
4.
Hee
,
J. L.
,
Santhosh
,
R.
,
Simmons
,
K.
,
Johnson
,
G.
,
Hann
,
D.
, and
Walsh
,
M.
,
2017
, “
Oil Film Thickness Measurements on Surfaces Close to an Aero-Engine Ball Bearing Using Optical Techniques
,”
ASME
Paper No. GT2017-63813.10.1115/GT2017-63813
5.
Glahn
,
A.
, and
Wittig
,
S.
,
1996
, “
Two-Phase Air/Oil Flow in Aero Engine Bearing Chambers: Characterization of Oil Film Flows
,”
ASME J. Eng. Gas Turbines Power
,
118
(
3
), pp.
578
583
.10.1115/1.2816687
6.
Kurz
,
W.
, and
Bauer
,
H.-J.
,
2014
, “
An Approach for Predicting the Flow Regime in an Aero Engine Bearing Chamber
,”
ASME
Paper No. GT2014-26756.10.1115/GT2014-26756
7.
Eastwick
,
C.
,
Huebner
,
K.
,
Azzopardi
,
B.
,
Simmons
,
K.
,
Young
,
C.
, and
Morrison
,
R.
,
2005
, “
Film Flow Around Bearing Chamber Support Structures
,”
ASME
Paper No. GT2005-68905. 10.1115/GT2005-68905
8.
Chandra
,
B.
,
Simmons
,
K.
,
Pickering
,
S.
, and
Tittel
,
M.
,
2011
, “
Factors Affecting Oil Removal From an Aeroengine Bearing Chamber
,”
ASME
Paper No. GT2010-22631.10.1115/GT2010-22631
9.
Chandra
,
B.
,
Simmons
,
K.
,
Pickering
,
S.
,
Collicott
,
S. H.
, and
Wiedemann
,
N.
,
2013
, “
Study of Gas/Liquid Behavior Within an Aeroengine Bearing Chamber
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051201
.10.1115/1.4007753
10.
Nicoli
,
A.
,
Johnson
,
K.
, and
Jefferson-Loveday
,
R.
,
2021
, “
Simulation of a Simplified Aeroengine Bearing Using a Fully Coupled Two-Way Eulerian Thin Film/Discrete Phase Approach Part II: Droplet Behaviour in the Chamber
,”
ASME J. Eng. Gas Turbines Power
, epub.10.1115/1.4051561
11.
Bristot
,
A.
,
Morvan
,
H. P.
, and
Simmons
,
K. A.
,
2016
, “
Evaluation of a Volume of Fluid CFD Methodology for the Oil Film Thickness Estimation in an Aero-Engine Bearing Chamber
,”
ASME
Paper No. GT2016-56237.10.1115/GT2016-56237
12.
Bristot
,
A.
,
Simmons
,
K.
, and
Klingsporn
,
M.
,
2017
, “
Effect of Turbulence Damping in VOF Simulation of an Aero-Engine Bearing Chamber
,”
ASME
Paper No. GT2017-63436.10.1115/GT2017-63436
13.
Ashmore
,
J.
,
Hosoi
,
A. E.
, and
Stone
,
H. A.
,
2003
, “
The Effect of Surface Tension on Rimming Flows in a Partially Filled Rotating Cylinder
,”
J. Fluid Mech.
,
479
, pp.
65
98
.10.1017/S0022112002003312
14.
Benilov
,
E. S.
,
Lapin
,
V. N.
, and
O'Brien
,
S. B. G.
,
2012
, “
On Rimming Flows With Shocks
,”
J. Eng. Math
,
75
(
1
), pp.
49
62
.10.1007/s10665-011-9512-2
15.
Villegas-Diaz
,
M.
,
Power
,
H.
, and
Riley
,
D. S.
,
2005
, “
Analytical and Numerical Studies of the Stability of Thin-Film Rimming Flow Subject to Surface Shear
,”
J. Fluid Mech.
,
541
(
1
), pp.
317
344
.10.1017/S0022112005006142
16.
Kay
,
E. D.
,
Hibberd
,
S.
, and
Power
,
H.
,
2014
, “
A Depth-Averaged Model for Non-Isothermal Thin-Film Rimming Flow
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1003
1015
.10.1016/j.ijheatmasstransfer.2013.11.040
17.
Kakimpa
,
B.
,
Morvan
,
H. P.
, and
Hibberd
,
S.
,
2015
, “
Solution Strategies for Thin Film Rimming Flow Modelling
,”
ASME
Paper No. GT2015-43503.10.1115/GT2015-43503
18.
Kakimpa
,
B.
,
Morvan
,
H.
, and
Hibberd
,
S.
,
2016
, “
The Depth-Averaged Numerical Simulation of Laminar Thin-Film Flows With Capillary Waves
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p. 112501.10.1115/1.4033471
19.
Kakimpa
,
B.
,
Morvan
,
H. P.
, and
Hibberd
,
S.
,
2015
, “
Thin-Film Flow Over a Rotating Plate: An Assessment of the Suitability of VOF and Eulerian Thin-Film Methods for the Numerical Simulation of Isothermal Thin-Film Flows
,”
ASME
Paper No. GT2015-43506.10.1115/GT2015-43506
20.
Kakimpa
,
B.
,
Morvan
,
H. P.
, and
Hibberd
,
S.
,
2016
, “
The Numerical Simulation of Multi-Scale Oil Films Using Coupled VOF and Eulerian Thin-Film Models
,”
ASME
Paper No. GT2016-56747.10.1115/GT2016-56747
21.
Singh
,
K.
,
Sharabi
,
M.
,
Ambrose
,
S.
,
Eastwick
,
C.
, and
Jefferson-Loveday
,
R.
,
2019
, “
Prediction of Film Thickness of an Aero-Engine Bearing Chamber Using Coupled VOF and Thin Film Model
,”
ASME
Paper No. GT2019-91314.10.1115/GT2019-91314
22.
Singh
,
K.
,
Sharabi
,
M.
,
Ambrose
,
S.
,
Eastwick
,
C.
,
Jefferson-Loveday
,
R.
, and
Cao
,
J.
, and Jacobs, A.,
2019
, “
Assessment of an Enhanced Thin Film Model to Capture Wetting and Drying
,”
ASME
Paper No. GT2019-91323.10.1115/GT2019-91323
23.
Nicoli
,
A.
,
Jefferson-Loveday
,
R.
, and
Simmons
,
K.
,
2019
, “
A New OpenFOAM Solver Capable of Modelling Oil Jet-Breakup and Subsequent Film Formation for Bearing Chamber Applications
,”
ASME
Paper No. GT2019-90264. 10.1115/GT2019-90264
24.
Adeniyi
,
A. A.
,
Morvan
,
H. P.
, and
Simmons
,
K. A.
,
2015
, “
A Multiphase Computational Study of Oil-Air Flow Within the Bearing Sector of Aeroengines
,”
ASME
Paper No. GT2015-43496.10.1115/GT2015-43496
25.
Nicoli
,
A.
,
2020
, “
Development and Application of a Fully Coupled Eulerian Thin Film/Discrete Phase Approach to a Simplified Aeroengine Bearing Chamber
,”
Ph.D. thesis
,
University of Nottingham
, Nottingham, UK.http://eprints.nottingham.ac.uk/id/eprint/61498
26.
Meredith
,
K. V.
,
Heather
,
A.
,
Vries
,
J. D.
, and
Xin
,
Y.
,
2011
, “
A Numerical Model for Partially-Wetted Flow of Thin Liquid Films
,”
WIT Transactions on Engineering Sciences
, 70, pp.
239
250
.10.2495/MPF110201
27.
Gorse
,
P.
,
Willenborg
,
K.
,
Busam
,
S.
,
Ebner
,
J.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
2003
, “
3D-LDA Measurements in an Aero-Engine Bearing Chamber
,”
ASME
Paper No. GT2003-38376.10.1115/GT2003-38376
You do not currently have access to this content.