Abstract

Numerical analysis model of an interlocking labyrinth seal (ILS) is established for studying the effect of tilting rotor on its rotordynamic characteristics. The dynamic characteristic identification method based on infinitesimal theory is applied to solve the dynamic force coefficient of the seal with arbitrary elliptical orbits and eccentric positions under field conditions. The paper investigated the dynamic characteristics of the interlocking labyrinth seal with various misalignment angles (θ = 0, 0.1 deg, 0.2 deg, 0.3 deg, 0.4 deg, 0.5 deg, 0.6 deg), different pressure ratios (Pin = 6.9 bar, PR = 0.5, 0.8), locations of misalignment center (Loc = 0, L/2, L). Results show that the tilting rotor could minimize the leakage flow rate of the ILS. When the misalignment angle θ = 0.6 deg, the mass flow rate can be reduced about 2.5%. The effect of each cavity in the ILS on the stability of the system is different. The cavity with the inlet close to the rotor and the outlet away from the rotor helps to improve the system stability due to its locally antirotational flow. The effective damping of the entire ILS increases as the misalignment angle increases. The system shows the best stability when the misalignment center is close to the seal inlet. The tilting rotor has a positive effect on the stability of the ILS only except for high whirling frequency (>100 Hz) under Loc = L.

References

1.
Childs
,
D. W.
,
1993
, “
Rotordynamic Models for Annular Gas Seals
,”
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley, Inc
,
New York
, pp.
173
185
.
2.
Childs
,
D. W.
, and
Vance
,
J. M.
,
1997
, “
Annular Gas Seals and Rotordynamics of Compressors and Turbines
,”
Proceedings of the 26th Turbomachinery Symposium
,
Texas A & M University, College Station, TX
,
Sept. 14–16
, pp.
201
220
.10.21423/R1HT06
3.
Arghir
,
M.
, and
Frêne
,
J.
,
1997
, “
Forces and Moments Due to Misalignment Vibrations in Annular Liquid Seals Using the Averaged Navier-Stokes Equations
,”
ASME J. Tribol.
,
119
(
2
), pp.
279
290
.10.1115/1.2833194
4.
San Andres
,
L.
,
1993
, “
Effect of Shaft Misalignment on the Dynamic Force Response of Annular Pressure Seals
,”
Tribol. Trans.
,
36
(
2
), pp.
173
182
.10.1080/10402009308983146
5.
Zhang
,
W.
,
Zhang
,
Y.
,
Yang
,
J.
, and
Li
,
C.
,
2016
, “
Influence of Tilting Rotor on Characteristics of Fluid-Induced Vibration for Labyrinth Seals
,”
J. Vibroeng.
,
18
(
8
), pp.
5416
5431
.10.21595/jve.2016.17737
6.
Benckert
,
H.
, and
Wachter
,
J.
,
1980
, “
Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics
,”
NASA Conference Publication 2133: Rotordynamic Instability Problems in High-Performance Turbomachinery
,
Texas A&M University
,
College Station
, May 10–12, pp.
189
212
.https://www.semanticscholar.org/paper/Flow-Induced-Spring-Coefficients-of-Labyrinth-Seals-Benckert-Wachter/0334f9c5f767102b0aff7cce4491729162a15e7f
7.
Leong
,
Y. M. M. S.
, and
Brown
,
R. D.
,
1982
,
Circumferential Pressure Distributions in a Model Labyrinth Seal
,
Heriot-Watt University
,
Edinburgh, UK
.
8.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs Lubrication Equation
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
429
436
.10.1115/1.3254633
9.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
An Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
325
331
.10.1115/1.3239907
10.
Thieleke
,
G.
, and
Stetter
,
H.
,
1990
, “
Experimental Investigations of Exciting Forces Caused by Flow in Labyrinth Seals
,”
Workshop Rotordynamic Instability Probl. High-Performance Turbomachinery
, College Station, TX, May 21–23, pp.
109
134
.https://www.semanticscholar.org/paper/EXPERIMENTAL-INVESTIGATIONS-OF-EXCITING-FORCES-BY-I-G./f3f37c3e5975725c0f568d27a0291bbbc7a57739
11.
Kirk
,
R. G.
,
1988
, “
Evaluation of Aerodynamic Instability Mechanisms for Centrifugal Compressors—Part II: Advanced Analysis
,”
J. Vib. Acoust. Stress Reliab. Des.
,
110
(
2
), pp.
207
212
.10.1115/1.3269500
12.
Kirk
,
R. G.
, and
Guo
,
Z.
,
2009
, “
Influence of Leak Path Friction on Labyrinth Seal Inlet Swirl
,”
Tribol. Trans.
,
52
(
2
), pp.
139
145
.10.1080/10402000802105430
13.
Childs
,
D. W., A.
,
Elrod
,
D.
, and
Hale
,
K.
,
1988
, “
Rotordynamic Coefficient and Leakage Test Results for Interlock and Tooth-on-Stator Labyrinth Seals
,”
ASME
Paper No. 88-GT-87.10.1115/88-GT-87
14.
Gao
,
R.
, and
Kirk
,
G.
,
2013
, “
CFD Study on Stepped and Drum Balance Labyrinth Seal
,”
Tribol. Trans.
,
56
(
4
), pp.
663
671
.10.1080/10402004.2013.776159
15.
Wu
,
T.
, and
San Andrés
,
L.
,
2019
, “
Leakage and Dynamic Force Coefficients for Two Labyrinth Gas Seals: Teeth-on-Stator and Interlocking Teeth Configurations. A Computational Fluid Dynamics Approach to Their Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
042501
.10.1115/1.4041123
16.
Elrod
,
D. A.
,
Pelletti
,
J. M.
, and
Childs
,
D. W.
,
1995
, “
Theory Versus Experiment for the Rotordynamic Coefficients of an Interlocking Labyrinth Gas Seal
,”
ASME
Paper No. 95-GT-432.10.1115/95-GT-432
17.
Wang
,
W-Z.
,
Liu
,
Y-Z.
,
Jiang
,
P-N.
, and
Chen
,
H-P.
,
2007
, “
Numerical Analysis of Leakage Flow Through Two Labyrinth Seals
,”
J. Hydrodyn.
,
19
(
1
), pp.
107
112
.10.1016/S1001-6058(07)60035-3
18.
Liu
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Ge
,
Q.
, and
Yuan
,
Y.
,
2007
, “
Influence of Leakage Flow Through Labyrinth Seals on Rotordynamics: Numerical Calculations and Experimental Measurements
,”
Arch. Appl. Mech.
,
77
(
8
), pp.
599
612
.10.1007/s00419-007-0119-z
19.
Gary
,
K. W.
,
2017
, “
Measurements of the Leakage and Rotordynamic Performance of Interlocking Labyrinth Seals
,”
M.S. thesis
,
Department of Mechanical Engineering, Texas A&M University
,
College Station, TX
.10.1115/GT2018-75885
20.
Ramirez
,
M.
,
Childs
,
D. W.
, and
Gary
,
K.
,
2018
, “
Development and Validation of Test Rig for Measurements of Leakage and Rotordynamic Performance of Interlocking Labyrinth Seals
,”
ASME
Paper No. GT2018-77131.10.111/GT2018-77131
21.
Ansys
,
I.
,
2006
,
ANSYS CFX-Solver Theory Guide. Release 11.0
,
Ansys
,
Canonsburg, PA
.
22.
Zhang
,
W.
,
Gu
,
Q.
,
Yang
,
J.
, and
Li
,
C.
,
2019
, “
Application of a Novel Rotordynamic Identification Method for Annular Seals With Arbitrary Elliptical Orbits and Eccentricities
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091016
.10.1115/1.4044121
23.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.10.1115/1.4004537
24.
Childs
,
D. W.
, Jr.
Mclean
,
J. E.
,
Zhang
,
M.
, and
Arthur
,
S. P.
,
2016
, “
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
0625056
.
25.
Sun
,
D.
,
Wang
,
S.
,
Fei
,
C.
,
Ai
,
Y.
, and
Wang
,
K.
,
2016
, “
Numerical and Experimental Investigation on the Effect of Swirl Brakes on the Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032507
.10.1115/1.4031562
You do not currently have access to this content.