Abstract

Shockless explosion combustor (SEC) is a promising concept for implementing pressure gain combustion into a conventional gas turbine cycle. This concept aims for a quasi-homogeneous auto-ignition that induces a moderate rise in pressure. Since the ignition is not triggered by an external source but driven primarily by chemical kinetics, the homogeneity of the auto-ignition is very sensitive to local perturbations in equivalence ratio, temperature, and pressure that produce undesired local premature ignition. Therefore, the precise injection of a well-defined fuel profile into a convecting air flow is crucial to ensure a quasi-homogeneous ignition of the entire mixture. The objective of this work is to demonstrate that the injected fuel profile is preserved throughout the entire measurement section. For this, two different control trajectories are investigated. Optical measurement techniques are used to illustrate the effect of turbulent transport and dispersion caused by boundary layer effects on the fuel concentration profile. Results from line-of-sight measurements by tunable diode laser absorption spectroscopy indicate that the transport of the fuel-air mixture is dominated by turbulent diffusion. However, comparisons to numerical calculations reveal the effect of dispersion toward the bounds of the fuel concentration profile. The spatially resolved distributions of the fuel concentration inside the combustor gained from acetone planar laser induced fluorescence (PLIF) replicates a typical velocity distribution of turbulent pipe flow in radial direction visualizing boundary layer effects. Comparing both methods provides deep insights into the transport processes that have an impact on the operation of the SEC.

References

References
1.
Gray
,
J.
,
Lemke
,
M.
,
Reiss
,
J.
,
Paschereit
,
C.
,
Sesterhenn
,
J.
, and
Moeck
,
J.
,
2017
, “
A Compact Shock-Focusing Geometry for Detonation Initiation: Experiments and Adjoint-Based Variational Data Assimilation
,”
Combust. Flame
,
183
, pp.
144
156
.10.1016/j.combustflame.2017.03.014
2.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Single and Counter-Rotating Wave Modes in an RDC
,”
AIAA
Paper No. 1608. 10.2514/6.1608
3.
Bobusch
,
B. C.
,
Berndt
,
P.
,
Paschereit
,
C. O.
, and
Klein
,
R.
,
2014
, “
Shockless Explosion Combustion: An Innovative Way of Efficient Constant Volume Combustion in Gas Turbines
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1680
1689
.10.1080/00102202.2014.935624
4.
Zeldovich
,
Y. B.
,
1980
, “
Regime Classification of an Exothermic Reaction With Nonuniform Initial Conditions
,”
Combust. Flame
,
39
(
2
), pp.
211
214
.10.1016/0010-2180(80)90017-6
5.
Gu
,
X.
,
Emerson
,
D.
, and
Bradley
,
D.
,
2003
, “
Modes of Reaction Front Propagation From Hot Spots
,”
Combust. Flame
,
133
(
1–2
), pp.
63
74
.10.1016/S0010-2180(02)00541-2
6.
Bartenev
,
A.
, and
Gelfand
,
B.
,
2000
, “
Spontaneous Initiation of Detonations
,”
Prog. Energ. Combust.
,
26
(
1
), pp.
29
55
.10.1016/S0360-1285(99)00007-6
7.
Reichel
,
T. G.
,
Schäpel
,
J.-S.
,
Bobusch
,
B. C.
,
Klein
,
R.
,
King
,
R.
, and
Paschereit
,
C. O.
,
2017
, “
Shockless Explosion Combustion: Experimental Investigation of a New Approximate Constant Volume Combustion Process
,”
ASME J. Eng. Gas Turb. Power
,
139
(
2
), p.
021504
.10.1115/1.4034214
8.
Yücel
,
F. C.
,
Völzke
,
F.
, and
Paschereit
,
C. O.
,
2019
, “
Effect of the Switching Times on the Operating Behavior of a Shockless Explosion Combustor
,”
Active Flow and Combustion Control 2018
,
Springer
,
Berlin, Germany
, Sept. 19–21, 2018, pp.
121
134
.10.1007/978-3-319-98177-2_8
9.
Vinkeloe
,
J.
,
Zander
,
L.
,
Szeponik
,
M.
, and
Djordjevic
,
N.
,
2019
, “
Tailoring the Temperature Sensitivity of Ignition Delay Times in Hot Spots Using Fuel Blends of Dimethyl Ether, Methane and Hydrogen
,”
Energy Fuels
, 34(2), pp.
2256
2259
.10.1021/acs.energyfuels.9b02619
10.
Li
,
H.
,
Wehe
,
S. D.
, and
McManus
,
K. R.
,
2011
, “
Real-Time Equivalence Ratio Measurements in Gas Turbine Combustors With a Near-Infrared Diode Laser Sensor
,”
P. Combust. Inst.
,
33
(
1
), pp.
717
724
.10.1016/j.proci.2010.05.114
11.
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2019
, “
Generation and Transport of Equivalence Ratio Fluctuations in an Acoustically Forced Swirl Burner
,”
Combust. Flame
,
209
, pp.
99
116
.10.1016/j.combustflame.2019.07.007
12.
Schulz
,
C.
, and
Sick
,
V.
,
2005
, “
Tracer-Lif Diagnostics: Quantitative Measurement of Fuel Concentration, Temperature and Fuel/Air Ratio in Practical Combustion Systems
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
75
121
.10.1016/j.pecs.2004.08.002
13.
Stöhr
,
M.
,
Arndt
,
C.
, and
Meier
,
W.
,
2015
, “
Transient Effects of Fuel-Air Mixing in a Partially-Premixed Turbulent Swirl Flame
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3327
3335
.10.1016/j.proci.2014.06.095
14.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.10.1016/j.combustflame.2010.08.004
15.
Trost
,
J.
,
Löffler
,
M.
,
Zigan
,
L.
, and
Leipertz
,
A.
,
2010
, “
Simultaneous Quantitative Acetone-Plif Measurements for Determination of Temperature and Gas Composition Fields in an IC-Engine
,”
Phys. Procedia
,
5
(
12
), pp.
689
696
.10.1016/j.phpro.2010.08.100
16.
Yoo
,
J.
,
Mitchell
,
D.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2010
, “
Planar Laser-Induced Fluorescence Imaging in Shock Tube Flows
,”
Exp. Fluids
,
49
(
4
), pp.
751
759
.10.1007/s00348-010-0876-2
17.
Lozano
,
A.
,
Yip
,
B.
, and
Hanson
,
R. K.
,
1992
, “
Acetone: A Tracer for Concentration Measurements in Gaseous Flows by Planar Laser-Induced Fluorescence
,”
Exp. Fluids
,
13
(
6
), pp.
369
376
.10.1007/BF00223244
18.
Djordjevic
,
N.
,
Rekus
,
M.
,
Vinkeloe
,
J.
, and
Zander
,
L.
,
2019
, “
Shock Tube and Kinetic Study on the Effects of co2 on Dimethyl Ether Autoignition at High Pressures
,”
Energy Fuels
,
33
(
10
), pp.
10197
10208
.10.1021/acs.energyfuels.9b01575
19.
Burke
,
U.
,
Somers
,
K. P.
,
O'Toole
,
P.
,
Zinner
,
C. M.
,
Marquet
,
N.
,
Bourque
,
G.
,
Petersen
,
E. L.
,
Metcalfe
,
W. K.
,
Serinyel
,
Z.
, and
Curran
,
H. J.
,
2015
, “
An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures
,”
Combust. Flame
,
162
(
2
), pp.
315
330
.10.1016/j.combustflame.2014.08.014
20.
Speziale
,
C. G.
,
1991
, “
Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
107
157
.10.1146/annurev.fl.23.010191.000543
You do not currently have access to this content.