Abstract

A new concept of single fuel reactivity-controlled compression ignition (RCCI) has been proposed through the catalytic partial oxidation (CPOX) reformation of diesel fuel. The reformed fuel mixture is then used as the low reactivity fuel and diesel itself is used as the high reactivity fuel. In this paper, two reformate mixtures from the reformation of diesel were selected for further analysis. Each reformate fuel mixture contained a significant fraction of inert gases (89% and 81%). The effects of the difference in the molar concentrations of the reformate mixtures were studied by experimenting with diesel as the direct injected fuel in RCCI over a varying start of injection timings and different blend ratios (i.e., the fraction of low and high reactivity fuels). The reformate mixture with the lower inert gas concentration had earlier combustion phasing and shorter combustion duration at any given diesel start of injection timing. The higher reactivity separation between reformate mixture and diesel, compared with gasoline and diesel, causes the combustion phasing of reformate-diesel RCCI to be more sensitive to the start of injection timing. The maximum combustion efficiency was found at a CA50 before top dead center (TDC), whereas the maximum thermal efficiency occurs at a CA50 after TDC. The range of energy-based blend ratios in which reformate-diesel RCCI is possible is between 25% and 45%, limited by ringing intensity (RI) at the low limit of blend ratios, and coefficient of variance (COV) of net indicated mean effective pressure (IMEPn) and combustion efficiency at the high limit. Intake boosting becomes necessary due to the oxygen deficiency caused by the low energy density of the reformate mixtures as it displaces intake air.

References

References
1.
Najt
,
P. M.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Paper No. 830264.10.4271/830264
2.
Thring
,
R. H.
,
1989
, “
Homogeneous-Charge Compression-Ignition (HCCI) Engines
,”
SAE
Paper No. 892068.10.4271/892068
3.
Stanglmaier
,
R. H.
, and
Roberts
,
C. E.
,
1999
, “
Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications
,”
SAE
Paper No. 1999-01-3682.10.4271/1999-01-3682
4.
Christensen
,
M.
, and
Johansson
,
B.
,
1999
, “
Homogeneous Charge Compression Ignition With Water Injection
,”
SAE
Paper No. 1999-01-0182.10.4271/1999-01-0182
5.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.10.1016/j.pecs.2009.05.001
6.
Lawler
,
B.
,
Splitter
,
D.
,
Szybist
,
J.
, and
Kaul
,
B.
,
2017
, “
Thermally Stratified Compression Ignition: A New Advanced Low Temperature Combustion Mode With Load Flexibility
,”
Appl. Energy
,
189
, pp.
122
132
.10.1016/j.apenergy.2016.11.034
7.
Boldaji
,
M. R.
,
Sofianopoulos
,
A.
,
Mamalis
,
S.
, and
Lawler
,
B.
,
2018
, “
Effects of Mass, Pressure, and Timing of Injection on the Efficiency and Emissions Characteristics of TSCI Combustion With Direct Water Injection
,”
SAE
Paper No. 2018-01-0178.10.4271/2018-01-0178
8.
Gainey
,
B.
,
Hariharan
,
D.
,
Yan
,
Z.
,
Zilg
,
S.
,
Rahimi Boldaji
,
M.
, and
Lawler
,
B.
,
2018
, “
A Split Injection of Wet Ethanol to Enable Thermally Stratified Compression Ignition
,”
Int. J. Engine Res.
10.1177/1468087418810587
9.
Boldaji
,
M. R.
,
Gainey
,
B.
, and
Lawler
,
B.
,
2019
, “
Thermally Stratified Compression Ignition Enabled by Wet Ethanol With a Split Injection Strategy: A CFD Simulation Study
,”
Appl. Energy
,
235
, pp.
813
826
.10.1016/j.apenergy.2018.11.009
10.
Gainey
,
B.
,
Yan
,
Z.
,
Gohn
,
J.
,
Boldaji
,
M. R.
, and
Lawler
,
B.
,
2019
, “
TSCI With Wet Ethanol: An Investigation of the Effects of Injection Strategy on a Diesel Engine Architecture
,”
SAE
Paper No. 2019-01-1146.10.4271/2019-01-1146
11.
Dec
,
J. E.
,
Yang
,
Y.
, and
Dronniou
,
N.
,
2011
, “
Boosted HCCI-Controlling Pressure-Rise Rates for Performance Improvements Using Partial Fuel Stratification With Conventional Gasoline
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1169
1189
.10.4271/2011-01-0897
12.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2006
, “
Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification With Two-Stage Ignition Fuels
,”
SAE
Paper No. 2006-01-0629.10.4271/2006-01-0629
13.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2011
, “
Smoothing HCCI Heat Release With Vaporization-Cooling-Induced Thermal Stratification Using Ethanol
,”
SAE Int. J. Fuels Lubr.
,
5
(
1
), pp.
7
27
.10.4271/2011-01-1760
14.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore
,
N.
, and
Delhom
,
J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE
Paper No. No. 2015-01-0832.10.4271/2015-01-0832
15.
Liu
,
X.
,
Goyal
,
H.
,
Kook
,
S.
, and
Ikeda
,
Y.
,
2019
, “
Triple Injection Strategies for Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Small-Bore Common-Rail Diesel Engine
,”
SAE
Paper No. 2019-01-1148.10.4271/2019-01-1148
16.
Aoyama
,
T.
,
Hattori
,
Y.
,
Mizuta
,
J. I.
, and
Sato
,
Y.
,
1996
, “
An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine
,”
SAE
Paper No. 960081.10.4271/960081
17.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.10.1243/146808705X30503
18.
Noehre
,
C.
,
Andersson
,
M.
,
Johansson
,
B.
, and
Hultqvist
,
A.
,
2006
, “
Characterization of Partially Premixed Combustion
,”
SAE
Paper No. No. 2006-01-341210.4271/2006-01-3412.
19.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2009
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using in-Cylinder Fuel Blending
,”
SAE Int. J. Engines
,
2
(
2
), pp.
24
39
.10.4271/2009-01-2647
20.
Curran
,
S.
,
Prikhodko
,
V.
,
Cho
,
K.
,
Sluder
,
C. S.
,
Parks
,
J.
,
Wagner
,
R.
, and
Reitz
,
R. D.
,
2010
, “
In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine
,”
SAE
Paper No. 2010-01-2206.10.4271/2010-01-2206
21.
Reitz
,
R. D.
,
2010
, “
High Efficiency Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion
,”
Directions in Engine Efficiency and Emissions Research Conference
, Detroit, MI, Sept. 27–30, pp.
27
30
.https://www.energy.gov/sites/prod/files/2014/03/f8/deer10_reitz.pdf
22.
Curran
,
S. J.
,
Cho
,
K.
,
Briggs
,
T. E.
, and
Wagner
,
R. M.
,
2011
, “
Drive Cycle Efficiency and Emissions Estimates for Reactivity-Controlled Compression Ignition in a Multi-Cylinder Light-Duty Diesel Engine
,”
ASME
Paper No. ICEF2011-60227.10.11115/ICEF2011-60227
23.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
,
Kaddatz
,
J.
, and
Reitz
,
R.
,
2011
, “
Fuel Reactivity-Controlled Compression Ignition (RCCI) Combustion in Light-and Heavy-Duty Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
360
374
.10.4271/2011-01-0357
24.
Splitter
,
D.
,
Kokjohn
,
S.
,
Rein
,
K.
,
Hanson
,
R.
,
Sanders
,
S.
, and
Reitz
,
R.
,
2010
, “
An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion
,”
SAE Int. J. Engines
,
3
(
1
), pp.
142
162
.10.4271/2010-01-0345
25.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity-Controlled Compression Ignition (RCCI): a Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
26.
Splitter
,
D.
,
Hanson
,
R.
,
Kokjohn
,
S.
, and
Reitz
,
R. D.
,
2011
, “
Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads With Conventional and Alternative Fuels
,”
SAE
Paper No. 2011-01-0363.10.4271/2011-01-0363
27.
Splitter
,
D.
,
Reitz
,
R.
, and
Hanson
,
R.
,
2010
, “
High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive
,”
SAE Int. J. Fuels Lubri.
,
3
(
2
), pp.
742
756
.10.4271/2010-01-2167
28.
Hanson
,
R.
,
Kokjohn
,
S.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Effects on Reactivity-Controlled Compression Ignition (RCCI) Combustion at Low Load
,”
SAE Int. J. Engines
,
4
(
1
), pp.
394
411
.10.4271/2011-01-0361
29.
Kaddatz
,
J.
,
Andrie
,
M.
,
Reitz
,
R. D.
, and
Kokjohn
,
S.
,
2012
, “
Light-Duty Reactivity-Controlled Compression Ignition Combustion Using a Cetane Improver
,”
SAE
Paper No. 2012-01-1110.10.4271/2012-01-1110
30.
Dempsey
,
A. B.
,
Walker
,
N. R.
, and
Reitz
,
R.
,
2013
, “
Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion
,”
SAE Int. J. Fuels Lubri.
,
6
(
1
), pp.
170
187
.10.4271/2013-01-1678
31.
Lawler
,
B.
, and
Mamalis
,
S.
,
2018
, U.S. Patent Application No. 15/082,469.
32.
Chuahy
,
F. D.
, and
Kokjohn
,
S. L.
,
2017
, “
Effects of Reformed Fuel Composition in “Single” Fuel Reactivity-Controlled Compression Ignition Combustion
,”
Appl. Energy
,
208
, pp.
1
11
.10.1016/j.apenergy.2017.10.057
33.
Chuahy
,
F. D. F.
, and
Kokjohn
,
S.
,
2018
, “
System and Second Law Analysis of the Effects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion
,”
SAE Int. J. Engines
,
11
(
6
), pp.
861
878
.10.4271/2018-01-0264
34.
Hariharan
,
D.
,
Yang
,
R.
,
Zhou
,
Y.
,
Gainey
,
B.
,
Mamalis
,
S.
,
Smith
,
R. E.
,
Lugo-Pimentel
,
M. A.
,
Castaldi
,
M. J.
,
Gill
,
R.
,
Davis
,
A.
,
Modroukas
,
D.
, and
Lawler
,
B.
,
2019
, “
Catalytic Partial Oxidation Reformation of Diesel, Gasoline, and Natural Gas for Use in Low Temperature Combustion Engines
,”
Fuel
,
246
, pp.
295
307
.10.1016/j.fuel.2019.02.003
35.
Hariharan
,
D.
,
Boldaji
,
M. R.
,
Yan
,
Z.
,
Mamalis
,
S.
, and
Lawler
,
B.
,
2020
, “
Single-Fuel Reactivity Controlled Compression Ignition Through Catalytic Partial Oxidation Reformation of Diesel Fuel
,”
Fuel
,
264
, p.
116815
.10.1016/j.fuel.2019.116815
36.
Brettschneider
,
J.
,
1997
, “
Extension of the Equation for Calculation of the Air-Fuel Equivalence Ratio
,”
SAE
Paper No. 972989.10.4271/972989
37.
Yang
,
R.
,
Hariharan
,
D.
,
Zilg
,
S.
,
Lawler
,
B.
, and
Mamalis
,
S.
,
2018
, “
Efficiency and Emissions Characteristics of an HCCI Engine Fueled by Primary Reference Fuels
,”
SAE Int. J. Engines
,
11
(
6
), pp.
993
1006
.10.4271/2018-01-1255
38.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2005
, “
An Investigation Into Lowest Acceptable Combustion Temperatures for Hydrocarbon Fuels in HCCI Engines
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2719
2726
.10.1016/j.proci.2004.08.132
You do not currently have access to this content.