Abstract

Scimitar engine is a hypersonic hybrid engine designed to propel the LAPCAT A2 aircraft. In this study, a novel exergy and NOx emission-based ecological performance analysis of the engine is performed. For this purpose, first, a component-based exergy analysis for the cruise phase of the Scimitar engine in air-turborocket mode is performed and the exergy destruction rates of engine components are determined at Mach 5 by the thermodynamic model developed. Then, a novel objective function, the coefficient of emission-based ecological performance (CEEP) is defined as “the propulsive power produced per unit environmentally harmful exhaust gas emission rate,” which can be utilized to assess the ecological impact of any jet engine. Finally, the impacts of cruise speed, altitude, and air and fuel mass flow rates on the exergetic and NOx emission-based ecological performance of the engine are investigated by the aid of the newly defined CEEP, together with the exergy efficiency and the coefficient of ecological performance. It is found that the combustion chamber is responsible for 57.36% of the overall exergy destruction rate of 123.80 MW at the cruise conditions, and CEEP relatively increases by 13.8% when the hydrogen fuel consumption rate is increased from 3.96 kg/s to 4.17 kg/s. Increasing the cruise speed from Ma = 4.88 to Ma = 5.2 and decreasing the altitude from 25 km to 23 km cause a relative degradation of 12.75% in CEEP.

References

References
1.
Airports Council International
,
2019
, “
WATR 2019 Annual World Airport Traffic Report and WATF 2019 Annual World Airport Traffic Forecasts 2019–2040
,” Airports Council International, Brussels, Belgium, accessed Aug. 25, 2019, http://www.aci.aero/Data-Centre/Airport-Statistics-Infographics
2.
Jivraj
,
F.
,
Varvill
,
R.
,
Bond
,
A.
, and
Paniagua
,
G.
,
2007
, “
The SCIMITAR Precooled Mach 5 Engine
,”
Second European Conference for Aerospace Sciences
(
EUCASS
),
Université libre de Bruxelles
, Brussels,
Belgium
, July 3–6, pp.
1
10
.https://www.researchgate.net/publication/263849692_The_Scimitar_Precooled_Mach_5_Engine
3.
Varvill
,
R.
, and
Bond
,
A.
,
2003
, “
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
,”
J. Brit. Interplanet.
,
56
, pp.
108
117
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.686.3312&rep=rep1&type=pdf
4.
Steelant
,
J.
,
2008
, “
LAPCAT: High-Speed Propulsion Technology
,”
Advances on Propulsion Technology for High-Speed Aircraft
, The Research and Technology Organisation (RTO) of NATO,
Neuilly-sur-Seine
,
France
, pp. 12.
1
–12.
38,
Educational Notes RTO-EN-AVT-150.https://www.sto.nato.int/publications/STO%20Educational%20Notes/RTO-EN-AVT-150/EN-AVT-150-12.pdf
5.
Dahl
,
G.
, and
Suttrop
,
F.
,
1998
, “
Engine Control and Low-NOx Combustion for Hydrogen Fuelled Aircraft Gas Turbines
,”
Int. J. Hydrogen Energy
,
23
(
8
), pp.
695
704
.10.1016/S0360-3199(97)00115-8
6.
Cecere
,
D.
,
Giacomazzi
,
E.
, and
Ingenito
,
A.
,
2014
, “
A Review on Hydrogen Industrial Aerospace Applications
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10731
10747
.10.1016/j.ijhydene.2014.04.126
7.
ACARE
,
2017
, “
Strategic Research and Innovation Agenda—2017 Update Volume 1
,” Advisory Council for Aviation Research and Innovation in Europe, Brussels, Belgium,
Report
.https://www.acare4europe.org/sites/acare4europe.org/files/document/ACARE-Strategic-Research-Innovation-Volume-1.pdf
8.
ESA
,
2011
, “
Skylon Assessment Report
,” European Space Agency, Paris, France,
Report
.https://londoneconomics.co.uk/blog/publication/skylon-assessment-report-european-space-agency-2011/
9.
Ingenito
,
A.
,
2016
, “
NOx Reduction Strategies in Scramjet Combustors
,”
Aero. Sci. Technol
,.
59
, pp.
189
198
.10.1016/j.ast.2016.10.020
10.
Grewe
,
V.
,
Stenke
,
A.
,
Ponater
,
M.
,
Sausen
,
R.
,
Pitari
,
G.
,
Iachetti
,
D.
,
Rogers
,
H.
,
Dessens
,
O.
,
Pyle
,
J.
,
Isaksen
,
I. S. A.
,
Gulstad
,
L.
,
Søvde
,
O. A.
,
Marizy
,
C.
, and
Pascuillo
,
E.
,
2007
, “
Climate Impact of Supersonic Air Traffic: An Approach to Optimize a Potential Future Supersonic Fleet—Results From the EU-Project SCENIC
,”
Atmos. Chem. Phys.
,
7
(
19
), pp.
5129
5145
.10.5194/acp-7-5129-2007
11.
Benini
,
E.
,
Pandolfo
,
S.
, and
Zoppellari
,
S.
,
2009
, “
Reduction of NO Emissions in a Turbojet Combustor by Direct Water/Steam Injection: Numerical and Experimental Assessment
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3506
3510
.10.1016/j.applthermaleng.2009.06.004
12.
Xisto
,
C.
,
Petit
,
O.
,
Grönstedt
,
T.
, and
Lundbladh
,
A.
,
2019
, “
Assessment of CO2 and NOx Emissions in Intercooled Pulsed Detonation Turbofan Engines
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011016
.10.1115/1.4040741
13.
Djordjevic
,
N.
,
Hanraths
,
N.
,
Gray
,
J.
,
Berndt
,
P.
, and
Moeck
,
J.
,
2018
, “
Numerical Study on the Reduction of NOx Emissions From Pulse Detonation Combustion
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041504
.10.1115/1.4038041
14.
Lee
,
D. S.
,
Pitari
,
G.
,
Grewe
,
V.
,
Gierens
,
K.
,
Penner
,
J. E.
,
Petzold
,
A.
,
Prather
,
M. J.
,
Schumann
,
U.
,
Bais
,
A.
,
Berntsen
,
T.
,
Iachetti
,
D.
,
Lim
,
L. L.
, and
Sausen
,
R.
,
2010
, “
Transport Impacts on Atmosphere and Climate: Aviation
,”
Atmos. Environ
,.,
44
(
37
), pp.
4678
4734
.10.1016/j.atmosenv.2009.06.005
15.
Villace
,
V. F.
, and
Paniagua
,
G.
,
2011
, “
Simulation of a Variable-Combined Cycle Engine for Dual Subsonic and Supersonic Cruise
,”
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, San Diego, CA, July 31–Aug. 3, Paper No.
AIAA 2011–6110
.10.2514/6.2011-6110
16.
Villace
,
V. F.
, and
Paniagua
,
G.
,
2013
, “
Numerical Model of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise
,”
Energies
,
6
, pp.
839
870
.10.3390/en6020839
17.
Villace
,
V. F.
, and
Paniagua
,
G.
,
2013
, “
On the Exergetic Effectiveness of Combined-Cycle Engines for High Speed Propulsion
,”
Energy
,
51
, pp.
382
394
.10.1016/j.energy.2012.11.051
18.
Uca
,
M. B.
,
Çolakoğlu
,
M.
, and
Durmayaz
,
A.
,
2016
, “
Energy and Exergy-Based Performance Analysis of the Scimitar Engine at Mach 5.0
,”
Proceedings Eighth International Ege Energy Symposium and Exhibition (IEESE-8)
,
Afyon Kocatepe University
,
Afyon, Turkey
, May 11–13, pp.
766
773
.https://www.researchgate.net/publication/303445494_Energy_and_Exergy-based_Performance_Analysis_of_the_Scimitar_Engine_at_Mach_50
19.
Uca
,
M. B.
,
2017
, “
Energy and Exergy-Based Thermodynamic Analysis of the Scimitar Engine at Mach 5.0
,” M.Sc. thesis,
Istanbul Technical University, Energy Institute
,
Istanbul
.
20.
Ingenito
,
A.
,
Agresta
,
A.
,
Andriani
,
R.
, and
Gamma
,
F.
,
2015
, “
NOx Reduction Strategies for High Speed Hydrogen Fuelled Vehicles
,”
Int. J. Hydrogen Energy
,
40
(
15
), pp.
5186
5196
.10.1016/j.ijhydene.2015.02.100
21.
Tanbay
,
T.
,
Uca
,
M. B.
, and
Durmayaz
,
A.
,
2020
, “
Assessment of NOx Emissions of the Scimitar Engine at Mach 5 Based on a Thermodynamic Cycle Analysis
,”
Int. J. Hydrogen Energy
,
45
(
5
), pp.
3632
3640
.10.1016/j.ijhydene.2019.02.133
22.
Zhang
,
J.
,
Wang
,
Z.
, and
Li
,
Q.
,
2017
, “
Thermodynamic Efficiency Analysis and Cycle Optimization of Deeply Precooled Combined Cycle Engine in the Air-Breathing Mode
,”
Acta Astronaut.
,
138
, pp.
394
406
.10.1016/j.actaastro.2017.06.011
23.
Yu
,
X.
,
Wang
,
C.
, and
Yu
,
D.
,
2019
, “
Precooler-Design & Engine Performance Conjugated Optimization for Fuel Direct Precooled Airbreathing Propulsion
,”
Energy
,
170
, pp.
546
556
.10.1016/j.energy.2018.12.192
24.
Yu
,
X.
,
Wang
,
C.
, and
Yu
,
D.
,
2020
, “
Thermodynamic Design and Optimization of the Multi-Branch Closed Brayton Cycle Based Precooling-Compression System for a Novel Hypersonic Aeroengine
,”
Energy Convers. Manage.
,
205
, p.
112412
.10.1016/j.enconman.2019.112412
25.
Yu
,
X.
,
Wang
,
C.
, and
Yu
,
D.
,
2019
, “
Configuration Optimization of the Tandem Cooling-Compression System for a Novel Precooled Hypersonic Airbreathing Engine
,”
Energy Convers. Manage.
,
197
, p.
111827
.10.1016/j.enconman.2019.111827
26.
Dong
,
P.
,
Tang
,
H.
, and
Chen
,
M.
,
2018
, “
Study on Multi-Cycle Coupling Mechanism of Hypersonic Precooled Combined Cycle Engine
,”
Appl. Therm. Eng.
,
131
, pp.
497
506
.10.1016/j.applthermaleng.2017.12.002
27.
Şöhret
,
Y.
,
Ekici
,
S.
,
Altuntaş
,
Ö.
,
Hepbasli
,
A.
, and
Karakoç
,
T. H.
,
2016
, “
Exergy as a Useful Tool for the Performance Assessment of Aircraft Gas Turbine Engines: A Key Review
,”
Prog. Aerosp. Sci.
,
83
, pp.
57
69
.10.1016/j.paerosci.2016.03.001
28.
Dong
,
Z.
,
Li
,
D.
,
Wang
,
Z.
, and
Sun
,
M.
,
2018
, “
A Review on Exergy Analysis of Aerospace Power Systems
,”
Acta. Astronaut.
,
152
, pp.
486
495
.10.1016/j.actaastro.2018.09.003
29.
Tanbay
,
T.
,
Durmayaz
,
A.
, and
Sogut
,
O. S.
,
2015
, “
Exergy-Based Ecological Optimisation of a Turbofan Engine
,”
Int. J. Exergy
,
16
(
3
), pp.
358
381
.10.1504/IJEX.2015.068231
30.
Colakoglu
,
M.
,
Tanbay
,
T.
,
Durmayaz
,
A.
, and
Sogut
,
O. S.
,
2016
, “
Effect of Heat Leakage on the Performance of a Twin-Spool Turbofan Engine
,”
Int. J. Exergy
,
19
(
2
), pp.
173
198
.10.1504/IJEX.2016.075604
31.
Zhao
,
X.
,
Thulin
,
O.
, and
Grönstedt
,
T.
,
2016
, “
First and Second Law Analysis of Intercooled Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021202
.10.1115/1.4031316
32.
Salpingidou
,
C.
,
Misirlis
,
D.
,
Vlahostergios
,
Z.
,
Donnerhack
,
S.
,
Flouros
,
M.
,
Goulas
,
A.
, and
Yakinthos
,
K.
,
2018
, “
Exergy Analysis and Performance Assessment for Different Recuperative Thermodynamic Cycles for Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071701
.10.1115/1.4038362
33.
Grönstedt
,
T.
,
Irannezhad
,
M.
,
Lei
,
X.
,
Thulin
,
O.
, and
Lundbladh
,
A.
,
2014
, “
First and Second Law Analysis of Future Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031202
.10.1115/1.4025727
34.
Yin
,
F.
, and
Rao
,
A. G.
,
2017
, “
Off-Design Performance of an Interstage Turbine Burner Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082603
.10.1115/1.4035821
35.
Şöhret
,
Y.
,
2017
, “
Sustainability and Thermo-Ecologic Assessments of a Turbojet Engine at Simulated Flight Conditions
,”
Int. J. Sust. Aviat.
,
3
(
4
), pp.
341
348
.10.1504/IJSA.2017.090308
36.
Tona
,
C.
,
Raviolo
,
P. A.
,
Pellegrini
,
L. F.
, and
de Oliveira Júnior
,
S.
,
2010
, “
Exergy and Thermoeceonomic Analysis of a Turbofan Engine During a Typical Commercial Flight
,”
Energy
,
35
(
2
), pp.
952
959
.10.1016/j.energy.2009.06.052
37.
Midilli
,
A.
, and
Dincer
,
I.
,
2009
, “
Development of Some Exergetic Parameters for PEM Fuel Cells for Measuring Environmental Impact and Sustainability
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3858
3872
.10.1016/j.ijhydene.2009.02.066
38.
Varvill
,
R.
,
2010
, “
Heat Exchanger Development at Reaction Engines Ltd
,”
Acta Astronaut.
,
66
(
9–10
), pp.
1468
1474
.10.1016/j.actaastro.2009.11.010
39.
Varvill
,
R.
, and
Bond
,
A.
,
2004
, “
The SKYLON  Spaceplane
,”
J. Brit. Interplanet.
,
57
, pp.
22
32
.https://www.jbis.org.uk/paper/2004.57.22
40.
Murray
,
J. J.
,
Guha
,
A.
, and
Bond
,
A.
,
1997
, “
Overview of the Development of Heat Exchangers for Use in Air-Breathing Propulsion Pre-Coolers
,”
Acta Astronaut.
,
41
(
11
), pp.
723
729
.10.1016/S0094-5765(97)00199-9
41.
Skottene
,
M.
, and
Rian
,
K. E.
,
2007
, “
A Study of NOx Formation in Hydrogen Flames
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3572
3585
.10.1016/j.ijhydene.2007.02.038
42.
Kotas
,
T. J.
,
1995
,
The Exergy Method of Thermal Plant Analysis
,
Krieger Publishing Company
, Malabar,
FL
.
43.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables 2 Volume-Set
, Journal of Physical and Chemical Reference Data Monographs,
American Institute of Physics, College Park, MD.
44.
Mattingly
,
J.
,
2006
, Elements of Propulsion: Gas Turbines and Rockets, AIAA Inc., Reston, VA.
45.
Cilgin
,
M. E.
, and
Turan
,
O.
,
2018
, “
Entropy Generation Calculation of a Turbofan Engine: A Case of CFM56-7B
,”
Int. J. Turbo Jet Eng.
,
35
(
3
), pp.
217
227
.10.1515/tjj-2017-0053
46.
Aydin
,
H.
,
Turan
,
O.
,
Karakoc
,
T. H.
, and
Midilli
,
A.
,
2015
, “
Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine
,”
Int. J. Green Energy
,
12
(
1
), pp.
28
40
.10.1080/15435075.2014.889004
You do not currently have access to this content.