Abstract

Strong transient engine load steps can result in low pressure ratio (ΠC) compressor operation for single stage turbocharged (TC) systems. For conventional full load TC engine matching using one-dimensional (1D)-engine process simulation, these operating points are of limited relevance and are consequently less studied. However, for the layout of sequential turbocharging systems, low pressure ratio compressor operation has to be thoroughly understood. Therefore, in this paper, three-dimensional (3D)-computational fluid dynamics (CFD) simulations will be presented, which analyze the stationary compressor behavior at low pressure ratios. Operating points at ΠC<1 are investigated by reducing the compressor outlet pressure. The simulation results are validated against measurement data acquired at a stationary hot gas test bench. The compressor performance is quantified by a corrected compressor torque. Opposed to the well-known operation at ΠC>1, the compressor generates power close to zero speed for ΠC<1 (turbine operation). At higher mass flowrates and ΠC<1, the compressor consumes power. Pressure build-up in the wheel is overcompensated by losses in the diffusor and the volute resulting in a net pressure drop across the stage. The 3D-CFD simulations also allow a speed-dependent evaluation of the choking cross section inside the compressor. At low circumferential speeds, compressor choke occurs in the volute or at the wheel outlet. At higher speeds, choking is observed at the wheel inlet. This behavior must be accounted for compressor map extrapolation methods for 1D-engine process simulations in order to correctly predict the choking mass flowrate.

References

References
1.
Schloßhauer
,
A.
,
2020
, “
Erweiterung der kennfeldbasierten Verdichtermodellierung für sequentielle Aufladesysteme
,” dissertation,
RWTH Aachen University
, Aachen, Germany.
2.
Society of Automotive Engineers, Inc.
,
1995
, “
Turbocharger Gas Stand Test Code
,” Society of Automotive Engineers, Warrendale, PA, Standard No.
J1826_199503
.https://www.sae.org/standards/content/j1826_199503/
3.
Leufvén
,
O.
,
2013
, “
Modeling for Control of Centrifugal Compressors
,”
Ph.D. thesis
,
Linköping University Electronic Press
, Linköping, Sweden.https://www.diva-portal.org/smash/get/diva2:617415/FULLTEXT01.pdf
4.
Eriksson
,
L.
,
2007
, “
Modeling and Control of Turbocharged SI and DI Engines
,”
Oil Gas Sci. Technol.
,
62
(
4
), pp.
523
538
.10.2516/ogst:2007042
5.
Llamas
,
X.
, and
Eriksson
,
L.
,
2017
, “
Control-Oriented Compressor Model With Adiabatic Efficiency Extrapolation
,”
SAE Int. J. Engines
,
10
(
4
), pp.
1903
1916
.10.4271/2017-01-1032
6.
Jensen
,
J.-P.
,
Kristensen
,
A.
,
Sorenson
,
S. C.
,
Houbak
,
N.
, and
Hendricks
,
E.
,
1991
, “
Mean Value Modeling of a Small Turbocharged Diesel Engine
,”
SAE
Paper No. 910070.10.4271/910070
7.
Casey
,
M.
, and
Schlegel
,
M.
,
2010
, “
Estimation of the Performance of Turbocharger Compressors at Extremely Low Pressure Ratios
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
2
), pp.
239
250
.10.1243/09576509JPE810
8.
Bunge
,
U.
,
Mockett
,
C.
,
Aupoix
,
B.
,
Haase
,
W.
,
Menter
,
F.
,
Schwamborn
,
D.
, and
Weinman
,
K.
,
2006
, “
Summary of Experience
,”
FLOMANIA—A European Initiative on Flow Physics Modelling
,
Springer
, Berlin, pp.
405
420
.
9.
Zellbeck
,
H.
,
Kleinen
,
M.
, and
Werner
,
R.
,
2013
, “
Neuer Ansatz Zur Berechnung Von Radialverdichtern
,”
MTZ-Motortech. Z.
,
74
(
10
), pp.
738
745
.10.1007/s35146-013-0223-2
10.
Schloßhauer
,
A.
,
Stadermann
,
M.
,
Klütsch
,
J.
,
Falke
,
F.
,
Lückmann
,
D.
, and
Aymanns
,
R.
,
2019
, “
Virtual Development of a Mixed-Sequential Boosting System for Small Gasoline Engines
,”
Aufladetechnische Konferenz Tagungsband
, Dresden, Germany, Sept. 26–27.
11.
Lardeau
,
S.
, and
Billard
,
F.
,
2016
, “
Development of an Elliptic-Blending Lag Model for Industrial Applications
,”
AIAA
Paper No. AIAA 2016–1600.10.2514/6.2016-1600
12.
Casey
,
M. V.
, and
Robinson
,
C. J.
,
2006
, “
A Guide to Turbocharger Compressor Characteristics
,”
Tenth Symposium Dieselmotorentechnik
,
M.
Bargende
, ed., Ostfildern, Germany, Mar. 30–31.https://www.osti.gov/etdeweb/biblio/20892848
13.
Wu
,
C.-H.
,
1993
, “
A General Theory of Two-and Three-Dimensional Rotational Flow in Subsonic and Transonic Turbomachines
,” Nasa Aeronautics and Space Administration, Scientific and Technical Information Program, Washington, DC, Report No.
4496
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950021582.pdf
14.
Dixon
,
S. L.
,
1998
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Pergamon Press
, Oxford, UK.
15.
Jeschke
,
P.
,
2013
, “
Luftfahrtantriebe I und II
,” Institut für Strahlantriebe und Turbomaschinen—RWTH, Aachen, Germany (unpublished).
16.
Bräunling
,
W. J.
,
2003
,
Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, Ideale und Reale Kreisprozesse, Thermische Turbomaschinen, Komponenten, Emissionen und Systeme
,
Springer-Verlag
, Berlin.
You do not currently have access to this content.