Abstract

A detailed investigation on flame structures and stabilization mechanisms of confined high momentum jet flames by one-dimensional (1D)-laser Raman measurements is presented. The flames were operated with natural gas (NG) at gas turbine relevant conditions in an optically accessible high-pressure test rig. The generic burner represents a full scale single nozzle of a high temperature FLOX® gas turbine combustor including a pilot stage. 1D-laser Raman measurements were performed on both an unpiloted and a piloted flame and evaluated on a single shot basis revealing the thermochemical states from unburned inflow conditions to burned hot gas in terms of average and statistical values of the major species concentrations, the mixture fraction and the temperature. The results show a distinct difference in the flame stabilization mechanism between the unpiloted and the piloted case. The former is apparently driven by strong mixing of fresh unburned gas and recirculated hot burned gas that eventually causes autoignition. The piloted flame is stabilized by the pilot stage followed by turbulent flame propagation. The findings help to understand the underlying combustion mechanisms and to further develop gas turbine burners following the FLOX concept.

References

References
1.
nning
,
J.
G.
,
1991
, “
FLOX®
,” WS Wärmeprozesstechnik GmbH,
Renningen, Germany
.
2.
Schütz
,
H.
,
Lückerath
,
R.
,
Noll
,
B.
, and
Aigner
,
M.
,
2007
, “
Complex Chemistry Simulation of FLOX®: Flameless Oxidation Combustion
,”
Clean Air Int. J. Energy Clean Environ.
,
8
(
3
), p.
239ff
.10.1615/InterJEnerCleanEnv.v8.i3.40
3.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2008
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.10.1115/1.2749280
4.
Schütz
,
H.
,
Lückerath
,
R.
,
Kretschmer
,
T.
,
Noll
,
B.
, and
Aigner
,
M.
,
2008
, “
Analysis of the Pollutant Formation in the FLOX® Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011503
.10.1115/1.2747266
5.
Lammel
,
O.
,
Rödiger
,
T.
,
Stöhr
,
M.
,
Ax
,
H.
,
Kutne
,
P.
,
Severin
,
M.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2014
, “
Investigation of Flame Stabilization in a High-Pressure Multi-Jet Combustor by Laser Measurement Techniques
,”
ASME
Paper No. GT2014-26376. 10.1115/GT2014-26376
6.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503ff
.10.1115/1.4001825
7.
Rödiger
,
T.
,
Lammel
,
O.
,
Aigner
,
M.
,
Beck
,
C.
, and
Krebs
,
W.
,
2013
, “
Part-Load Operation of a Piloted FLOX® Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031503
.10.1115/1.4007754
8.
Schütz
,
H.
,
Lammel
,
O.
,
Schmitz
,
G.
,
Rödiger
,
T.
, and
Aigner
,
M.
,
2012
, “
EZEE®: A High Power Density Modulating FLOX® Combustor
,”
ASME
Paper No. GT2012-68997. 10.1115/GT2012-68997
9.
Lammel
,
O.
,
Severin
,
M.
,
Ax
,
H.
,
Lückerath
,
R.
,
Tomasello
,
A.
,
Emmi
,
Y.
,
Noll
,
B.
,
Aigner
,
M.
, and
Panek
,
L.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure, A: Experimental and Numerical Investigation for Different Fuels
,”
ASME
Paper No. GT2017-64615. 10.1115/GT2017-64615
10.
Severin
,
M.
,
Lammel
,
O.
,
Ax
,
H.
,
Lückerath
,
R.
, and
Aigner
,
M.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure, B: Detailed Investigation of Flame Stabilization With Simultaneous PIV and OH LIF
,”
ASME
Paper No. GT2017-64556
. 10.1115/GT2017-64556
11.
Schäfer
,
D.
,
Gounder
,
J. D.
,
Lammel
,
O.
,
Ax
,
H.
,
Lückerath
,
R.
, and
Aigner
,
M.
,
2019
, “
High Momentum Jet Flames at Elevated Pressure, D: Simultaneous Measurements of OH/PAH PLIF and Mie Scattering on Liquid Fuels
,”
ASME
Paper No. GT2019-91177
. 10.1115/GT2019-91177
12.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2010
, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Conditions
,”
ASME
Paper No. GT2010-22722
. 10.1115/GT2010-22722
13.
Lückerath
,
R.
,
Lammel
,
O.
,
Stöhr
,
M.
,
Boxx
,
I.
,
Stopper
,
U.
,
Meier
,
W.
,
Janus
,
B.
, and
Wegner
,
B.
,
2011
, “
Experimental Investigations of Flame Stabilization of a Gas Turbine Combustor
,”
ASME
Paper No. GT2011-45790
. 10.1115/GT2011-45790
14.
Ax
,
H.
,
Stopper
,
U.
,
Meier
,
W.
,
Aigner
,
M.
, and
Güthe
,
F.
,
2010
, “
Experimental Analysis of the Combustion Behavior of a Gas Turbine Burner by Laser Measurement Techniques
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
051503
.10.1115/1.3205033
15.
Kojima
,
J.
,
Ikeda
,
Y.
, and
Nakajima
,
T.
,
2005
, “
Basic Aspects of OH(a), CH(a), and C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane-Air Premixed Flames
,”
Combust. Flame
,
140
(
1–2
), pp.
34
45
.10.1016/j.combustflame.2004.10.002
16.
Meier
,
W.
,
Prucker
,
S.
,
Cao
,
M.-H.
, and
Stricker
,
W.
,
1996
, “
Characterization of Turbulent H2/N2/Air Jet Diffusion Flames by Single-Pulse Spontaneous Raman Scattering
,”
Combust. Sci. Technol.
,
118
(
4–6
), pp.
293
312
.10.1080/00102209608951983
17.
Prucker
,
S.
,
Meier
,
W.
, and
Stricker
,
W.
,
1994
, “
A Flat Flame Burner as Calibration Source for Combustion Research: Temperatures and Species Concentrations of Premixed H2/Air Flames
,”
Rev. Sci. Instrum.
,
65
(
9
), pp.
2908
2911
.10.1063/1.1144637
18.
Weigand
,
P.
,
Lückerath
,
R.
, and
Meier
,
W.
,
2019
, “Documentation of Flat Premixed Laminar CH4/Air Standard Flames: Temperatures and Species Concentrations,” accessed Jan. 10, 2019, http://www.dlr.de/vt/datenarchiv/
19.
Morley
,
C.
,
2019
, “A Chemical Equilibrium Program for Windows,” accessed Jan. 14, 2019, http://www.gaseq.co.uk
20.
Eckbreth
,
A. C.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
(Combustion Science and Technology Book Series), 2nd ed.,
Taylor & Francis
,
New York
.
21.
Bilger
,
R. W.
,
1989
, “
The Structure of Turbulent Nonpremixed Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
475
488
.10.1016/S0082-0784(89)80054-2
You do not currently have access to this content.