Abstract

Generic models are proposed to evaluate the skin friction coefficient acting on enclosed rotating disks and cylinders under various flow regimes. In particular, a model taking into account the inner radius of the disk is developed. The models are compared with experimental data obtained from coast-down tests of a high-speed spindle supported on gas lubricated bearings, operated in air and in halocarbon R245fa at various pressures. The windage losses are first computed considering state-of-the-art laminar flow loss models in the gas bearings and an experimentally validated laminar-turbulent flow loss model in the air gap. This reference approach predicts the air data with a good accuracy (deviation less than 5%) but underestimates the organic fluid data by up to 36%. This deviation is considerably reduced (max 6.8%) when applying the proposed multiflow regime loss model for enclosed rotating disks to the thrust bearing. Finally, the proposed laminar-turbulent flow loss model for enclosed rotating cylinders is simultaneously applied to the journal bearings and the air gap. A peak deviation of 6.5% is maintained among all test cases when setting the critical Taylor number to an artificial value (67) instead of the theoretical value (41.1) characterizing the onset of growth of Taylor vortices. Taking into account the uncertainties on the bearing clearances, as well as on the operating pressure and temperature, a ±10% agreement with the experimental data is obtained.

References

References
1.
Celeroton
AG
,
2016
, “
Launch of Turbo Compressors With Gas Bearings
,”
Volketswil, Switzerland
, accessed Mar. 3, 2020, https://www.celeroton.com/en/about-us/news/detail/launch-of-turbo-compressors-with-gas-bearings.html
2.
Wagner
,
P. H.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2020
, “
Theoretical and Experimental Investigation of a Small-Scale, High-Speed, and Oil-Free Radial Anode Off-Gas Recirculation Fan for Solid Oxide Fuel Cell Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p. 041023.10.1115/1.4045104
3.
Wagner
,
P. H.
,
Wuillemin
,
Z.
,
Constantin
,
D.
,
Diethelm
,
S.
,
Van Herle
,
J.
, and
Schiffmann
,
J.
,
2020
, “
Experimental Characterization of a Solid Oxide Fuel Cell Coupled to a Steam-Driven Micro Anode Off-Gas Recirculation Fan
,”
Appl. Energy
,
262
, p.
114219
.10.1016/j.apenergy.2019.114219
4.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2009
, “
Experimental Investigation of a Direct Driven Radial Compressor for Domestic Heat Pumps
,”
Int. J. Refrig.
,
32
(
8
), pp.
1918
1928
.10.1016/j.ijrefrig.2009.07.006
5.
Schiffmann
,
J.
,
Kontomaris
,
K.
,
Arpagaus
,
C.
,
Bless
,
F.
, and
Bertsch
,
S.
,
2020
, “
Scale Limitations of Gas Bearing Supported Turbocompressors for Vapor Compression Cycles
,”
Int. J. Refrig.
,
109
, pp.
92
104
.10.1016/j.ijrefrig.2019.09.019
6.
Demierre
,
J.
,
Rubino
,
A.
, and
Schiffmann
,
J.
,
2014
, “
Modeling and Experimental Investigation of an Oil-Free Microcompressor-Turbine Unit for an Organic Rankine Cycle Driven Heat Pump
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032602
.10.1115/1.4028391
7.
Cunningham
,
R. E.
,
Fleming
,
D. P.
, and
Anderson
,
W. J.
,
1971
, “
Experimental Load Capacity and Power Loss of Herringbone Grooved Gas Lubricated Journal Bearings
,”
ASME J. Lubr. Tech
,
93
(
3
), pp.
415
422
.10.1115/1.3451610
8.
Schiffmann
,
J.
,
2008
, “
Integrated Design, Optimization and Experimental Investigation of a Direct Driven Turbocompressor for Domestic Heat Pumps
,”
Ph.D. thesis
,
Ecole Polytechnique Fédérale de Lausanne
, Lausanne, Switzerland.10.5075/epfl-thesis-4126
9.
Allaire
,
P. E.
,
Kasarda
,
M. E. F.
, and
Fujita
,
L. K.
,
1999
, “
Rotor Power Losses in Planar Radial Magnetic Bearings—Effects of Number of Stator Poles, Air Gap Thickness, and Magnetic Flux Density
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
691
696
.10.1115/1.2818528
10.
Kasarda
,
M. E. F.
,
Allaire
,
P. E.
,
Norris
,
P. M.
,
Mastrangelo
,
C.
, and
Maslen
,
E. H.
,
1999
, “
Experimentally Determined Rotor Power Losses in Homopolar and Heteropolar Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
697
702
.10.1115/1.2818529
11.
Millward
,
J. A.
, and
Edwards
,
M. F.
,
1996
, “
Windage Heating of Air Passing Through Labyrinth Seals
,”
ASME J. Turbomach.
,
118
(
2
), pp.
414
419
.10.1115/1.2836657
12.
Massini
,
D.
,
Fondelli
,
T.
,
Andreini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Leonardi
,
F.
,
2018
, “
Experimental and Numerical Investigation on Windage Power Losses in High Speed Gears
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082508
.10.1115/1.4038471
13.
Zwyssig
,
C.
,
Round
,
S. D.
, and
Kolar
,
J. W.
,
2006
, “
Analytical and Experimental Investigation of a Low Torque, Ultra-High Speed Drive System
,”
Conference Record of the IEEE Industry Applications Conference Forty-First IAS Annual Meeting
, Tampa, FL, Oct. 8–12, pp.
1507
1513
.10.1109/IAS.2006.256729
14.
Luomi
,
J.
,
Zwyssig
,
C.
,
Looser
,
A.
, and
Kolar
,
J. W.
,
2009
, “
Efficiency Optimization of a 100-W 500 000-r/Min Permanent-Magnet Machine Including Air-Friction Losses
,”
IEEE Trans. Ind. Appl.
,
45
(
4
), pp.
1368
1377
.10.1109/TIA.2009.2023492
15.
Huynh
,
C.
,
Zheng
,
L.
, and
Acharya
,
D.
,
2008
, “
Losses in High Speed Permanent Magnet Machines Used in Microturbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022301
.10.1115/1.2982151
16.
Mack
,
M.
,
1967
, “
Luftreibungsverluste Bei Elektrischen Maschinen Kleiner Baugrösse
,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.
17.
Couette
,
M. M.
,
1890
, “
Etudes Sur Le Frottement Des Liquides
,”
Ann. Chim. Phys.
,
21
, pp.
433
510
. https://www.worldcat.org/title/etudes-sur-le-frottement-des-liquides/oclc/11860765
18.
Taylor
,
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Philos. Trans. R. Soc., London
,
223
, pp.
289
345
.10.1098/rspa.1923.0013
19.
Nachouane
,
A. B.
,
Abdelli
,
A.
,
Friedrich
,
G.
, and
Vivier
,
S.
,
2016
, “
Estimation of Windage Losses Inside Very Narrow Air Gaps of High Speed Electrical Machines Without an Internal Ventilation Using CFD Methods
,”
XXII International Conference on Electrical Machines (ICEM)
,
Lausanne, Switzerland
, Sept. 4–7, pp.
2704
2710
.10.1109/ICELMACH.2016.7732904
20.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
, Chapter 6: Rotating Cylinders, Annuli, and Spheres,
Butterworth-Heinemann
,
Oxford, UK
.
21.
Wendt
,
F.
,
1933
, “
Turbulente Strömungen Zwischen Zwei Rotierenden Konaxialen Zylindern
,”
Ing. Arch.
,
4
(
6
), pp.
577
595
.10.1007/BF02084936
22.
Yamada
,
Y.
,
1962
, “
Torque Resistance of a Flow Between Rotating Co-Axial Cylinders Having Axial Flow
,”
Bull. JSME
,
5
(
20
), pp.
634
642
.10.1299/jsme1958.5.634
23.
Vrancik
,
J. E.
,
1968
,
Prediction of Windage Power Loss in Alternators
,
NASA Lewis Research Center
,
Washington, DC
, Report No. D-4849.
24.
Bilgen
,
E.
, and
Boulos
,
R.
,
1973
, “
Functional Dependence of Torque Coefficient of Coaxial Cylinders on Gap Width and Reynolds Numbers
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
122
126
.10.1115/1.3446944
25.
Lathrop
,
D. P.
,
Fineberg
,
J.
, and
Swinney
,
H. L.
,
1992
, “
Turbulent Flow Between Concentric Rotating Cylinders at Large Reynolds Number
,”
Phys. Rev. Lett.
,
68
(
10
), pp.
1515
1518
.10.1103/PhysRevLett.68.1515
26.
Wild
,
P. M.
,
Djilali
,
N.
, and
Vickers
,
G. W.
,
1996
, “
Experimental and Computational Assessment of Windage Losses in Rotating Machinery
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
116
122
.10.1115/1.2817488
27.
Burnand
,
G.
,
Araujo
,
D. M.
,
Koechli
,
C.
, and
Perriard
,
Y.
,
2017
, “
Validation by Measurements of a Windage Losses Model for Very-High-Speed Machines
,”
20th International Conference on Electrical Machines and Systems (ICEMS)
,
Sydney, NSW, Australia
, Aug. 11–14, pp.
1
4
.10.1109/ICEMS.2017.8056273
28.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
29.
Gu
,
L.
,
Guenat
,
E.
, and
Schiffmann
,
J.
,
2020
, “
A Review of Grooved Dynamic Gas Bearings
,”
ASME Appl. Mech. Rev.
,
72
(
1
), p.
010802
.10.1115/1.4044191
30.
Hearn
,
E. J.
,
1997
,
Mechanics of Materials
, Vol.
2
, 3rd ed., Chapter 4: Rings, Discs and Cylinders Subjected to Rotation and Thermal Gradients,
Butterworth-Heinemann
,
Oxford, UK
.
31.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.10.18434/T4JS3C
You do not currently have access to this content.