Abstract

Accurate and robust thermochemical models are required to identify future low-NOx technologies that can meet the increasingly stringent emissions regulations in the gas turbine industry. These mechanisms are generally optimized and validated for specific ranges of operating conditions, which result in an abundance of models offering accurate nominal solutions over different parameter ranges. Under atmospheric conditions, and for methane combustion, relatively good agreement between models and experiments is currently observed. At engine-relevant pressures, however, a large variability in predictions is obtained as the models are often used outside their validation region. The high levels of uncertainty found in chemical kinetic rates enable such discrepancies between models, even if the reactions are within recommended rate values. This work investigates the effect of such kinetic uncertainties in NO predictions by propagating the uncertainties of 30 reactions that are both uncertain and important to NO formation, through the combustion model at engine-relevant pressures. Understanding the uncertainty sources in model predictions and their effect on emissions at these pressures is key in developing accurate thermochemical models to design future combustion chambers with any confidence. Lean adiabatic, freely propagating, laminar flames are therefore chosen to study the effect of parametric kinetic uncertainties. A nonintrusive, level 2, nested sparse-grid approach is used to obtain accurate surrogate models to quantify NO prediction intervals at various pressures. The forward analysis is carried up to 32 atm to quantify the uncertainty in emissions predictions to pressures relevant to the gas turbine community, which reveals that the NO prediction uncertainty decreases with pressure. After performing a reaction pathway analysis (RPA), this reduction is attributed to the decreasing contribution of the prompt-NO pathway to total emissions, as the peak CH concentration and the CH layer thickness decrease with pressure. In the studied lean condition, the contribution of the pressure-dependent N2O production route increases rapidly up to 10 atm before stabilizing toward engine-relevant pressures. The uncertain prediction ranges provide insight into the accuracy and precision of simulations at high pressures and warrant further research to constrain the uncertainty limits of kinetic rates to capture NO concentrations with confidence in early design phases.

References

1.
Bergthorson
,
J. M.
, and
Thomson
,
M. J.
,
2015
, “
A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines
,”
Renewable Sustainable Energy Rev.
,
42
(), pp.
1393
1417
.10.1016/j.rser.2014.10.034
2.
Lieuwen
,
T.
,
Chang
,
M.
, and
Amato
,
A.
,
2013
, “
Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations
,”
Combust. Flame
,
160
(
8
), pp.
1311
1314
.10.1016/j.combustflame.2013.05.001
3.
Schofield
,
K.
,
2012
, “
Large Scale Chemical Kinetic Models of Fossil Fuel Combustion: Adequate as Engineering Models—No More, No Less
,”
Energy Fuel
,
26
(
9
), pp.
5468
5480
.10.1021/ef300858s
4.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C. J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, “
GRI-Mech 3.0
,” accessed May 20, 2020, http://combustion.berkeley.edu/gri-mech/version30/text30.html#thefiles
5.
Zhou
,
C.-W.
,
Li
,
Y.
,
O'Connor
,
E.
,
Somers
,
K. P.
,
Thion
,
S.
,
Keesee
,
C.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Kukkadapu
,
G.
,
Sung
,
C.-J.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
,
Santner
,
J.
,
Ju
,
Y.
,
Held
,
T.
,
Haas
,
F. M.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2016
, “
A Comprehensive Experimental and Modeling Study of Isobutene Oxidation
,”
Combust. Flame
,
167
, pp.
353
379
.10.1016/j.combustflame.2016.01.021
6.
Versailles
,
P.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Measurements of the Reactivity of Premixed, Stagnation, Methane-Air Flames at Gas Turbine Relevant Pressures
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011027
.10.1115/1.4041125
7.
Burke
,
M. P.
,
Dryer
,
F. L.
, and
Ju
,
Y.
,
2011
, “
Assessment of Kinetic Modeling for Lean H2/CH4/O2/Diluent Flames at High Pressures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
905
912
.10.1016/j.proci.2010.05.021
8.
Versailles
,
P.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Nitric Oxide Formation in Lean, Methane-Air Stagnation Flames at Supra-Atmospheric Pressures
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
711
718
.10.1016/j.proci.2018.05.060
9.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
10.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.10.1016/0360-1285(89)90017-8
11.
Lipardi
,
A. C.
,
Versailles
,
P.
,
Watson
,
G. M.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2017
, “
Experimental and Numerical Study on NOx Formation in CH4–Air Mixtures Diluted With Exhaust Gas Components
,”
Combust. Flame
,
179
, pp.
325
337
.10.1016/j.combustflame.2017.02.009
12.
Wang
,
H.
, and
Sheen
,
D. A.
,
2015
, “
Combustion Kinetic Model Uncertainty Quantification, Propagation and Minimization
,”
Prog. Energy Combust. Sci.
,
47
, pp.
1
31
.10.1016/j.pecs.2014.10.002
13.
Prager
,
J.
,
Najm
,
H. N.
,
Sargsyan
,
K.
,
Safta
,
C.
, and
Pitz
,
W. J.
,
2013
, “
Uncertainty Quantification of Reaction Mechanisms Accounting for Correlations Introduced by Rate Rules and Fitted Arrhenius Parameters
,”
Combust. Flame
,
160
(
9
), pp.
1583
1593
.10.1016/j.combustflame.2013.01.008
14.
Zsély
,
I. G.
,
Zádor
,
J.
, and
Turányi
,
T.
,
2008
, “
Uncertainty Analysis of NO Production During Methane Combustion
,”
Int. J. Chem. Kinet.
,
40
(
11
), pp.
754
768
.10.1002/kin.20373
15.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.10.2307/2371268
16.
Sheen
,
D. A.
, and
Wang
,
H.
,
2011
, “
The Method of Uncertainty Quantification and Minimization Using Polynomial Chaos Expansions
,”
Combust. Flame
,
158
(
12
), pp.
2358
2374
.10.1016/j.combustflame.2011.05.010
17.
Slavinskaya
,
N. A.
,
Abbasi
,
M.
,
Starcke
,
J. H.
,
Whitside
,
R.
,
Mirzayeva
,
A.
,
Riedel
,
U.
,
Li
,
W.
,
Oreluk
,
J.
,
Hegde
,
A.
,
Packard
,
A.
,
Frenklach
,
M.
,
Gerasimov
,
G.
, and
Shatalov
,
O.
,
2017
, “
Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion
,”
Energy Fuel
,
31
(
3
), pp.
2274
2297
.10.1021/acs.energyfuels.6b02319
18.
Tomlin
,
A. S.
,
2006
, “
The Use of Global Uncertainty Methods for the Evaluation of Combustion Mechanisms
,”
Reliab. Eng. Syst. Safe
,
91
(
10–11
), pp.
1219
1231
.10.1016/j.ress.2005.11.026
19.
Durocher
,
A.
,
Versailles
,
P.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Impact of Kinetic Uncertainties on Accurate Prediction of NO Concentrations in Premixed Alkane-Air Flames
,”
Combust. Sci. Technol.
,
192
(
6
), pp.
1
27
.10.1080/00102202.2019.1604515
20.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
M. J.
,
1992
, “
Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method-Combustion of Methane
,”
Prog. Energy Combust. Sci.
,
18
(
1
), pp.
47
73
.10.1016/0360-1285(92)90032-V
21.
Smith
,
R.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
,
SIAM
,
Philadelphia, PA
.
22.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed May 20, 2020, http://www.cantera.org
23.
Adams
,
B.
,
Bauman
,
L.
,
Bohnhoff
,
W.
,
Dalbey
,
K.
,
Ebeida
,
M.
,
Eddy
,
J.
,
Eldred
,
M.
,
Hough
,
P.
,
Hu
,
K.
,
Jakeman
,
J.
,
Stephens
,
J.
,
Swiler
,
L.
,
Vigil
,
D.
, and
Wildey
,
T.
,
2015
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User's Manual
,” Sandia National Laboratory, Albuquerque, NM, Report No.
SAND2014-4633
.10.2172/1177077
24.
University of California at San Diego
,
2016
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” University of California at San Diego, San Diego, CA, accessed May 20, 2020, http://combustion.ucsd.edu
25.
Versailles
,
P.
,
Watson
,
G. M.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2018
, “
Thermochemical Mechanism Optimization for Accurate Predictions of CH Concentrations in Premixed Flames of C1-C3 Alkane Fuels
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p. 061508.10.1115/1.4038416
26.
Lamoureux
,
N.
,
El Merhubi
,
H.
,
Pillier
,
L.
,
de Persis
,
S.
, and
Desgroux
,
P.
,
2016
, “
Modeling of NO Formation in Low Pressure Premixed Flames
,”
Combust. Flame
,
163
, pp.
557
575
.10.1016/j.combustflame.2015.11.007
27.
Zádor
,
J.
,
Zsély
,
I. G.
,
Turányi
,
T.
,
Ratto
,
M.
,
Tarantola
,
S.
, and
Saltelli
,
A.
,
2005
, “
Local and Global Uncertainty Analyses of a Methane Flame Model
,”
J. Phys. Chem. A
,
109
(
43
), pp.
9795
9807
.10.1021/jp053270i
28.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Esser
,
C.
,
Frank
,
P.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
1992
, “
Evaluated Kinetic Data for Combustion Modelling
,”
J. Phys. Chem. Ref. Data
,
21
(
3
), pp.
411
734
.10.1063/1.555908
29.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
2005
, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J. Phys. Chem. Ref. Data
,
34
(
3
), pp.
757
1397
.10.1063/1.1748524
30.
Tsang
,
W.
, and
Hampson
,
R.
,
1986
, “
Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds
,”
J. Phys. Chem. Ref. Data
,
15
(
3
), pp.
1087
1279
.10.1063/1.555759
31.
Lindemann
,
F.
,
Arrhenius
,
S.
,
Langmuir
,
I.
,
Dhar
,
N.
,
Perrin
,
J.
, and
Lewis
,
W. M.
,
1922
, “
Discussion on the Radiation Theory of Chemical Action
,”
Trans. Faraday Soc.
,
17
, pp.
598
606
.10.1039/TF9221700598
32.
Gilbert
,
R.
,
Luther
,
K.
, and
Troe
,
J.
,
1983
, “
Theory of Thermal Unimolecular Reactions in the Fall-Off Range—II: Weak Collision Rate Constants
,”
Ber. Bunsengesellschaft Phys. Chem.
,
87
(
2
), pp.
169
177
.10.1002/bbpc.19830870218
33.
Askey
,
R.
, and
Wilson
,
J. A.
,
1985
,
Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials
, Vol.
319
,
American Mathematical Society
,
Providence, RI
.
34.
Winokur
,
J.
,
Kim
,
D.
,
Bisetti
,
F.
,
Le Maître
,
O. P.
, and
Knio
,
O. M.
,
2016
, “
Sparse Pseudo Spectral Projection Methods With Directional Adaptation for Uncertainty Quantification
,”
J. Sci. Comput.
,
68
(
2
), pp.
596
623
.10.1007/s10915-015-0153-x
35.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
,
Princeton, NJ
.
36.
Smolyak
,
S.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Sov. Math. Dokl.
,
4
, pp.
240
243
.http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=27586&option_lang=eng
37.
Burke
,
M. P.
, and
Klippenstein
,
S. J.
,
2017
, “
Ephemeral Collision Complexes Mediate Chemically Termolecular Transformations That Affect System Chemistry
,”
Nat. Chem.
,
9
(
11
), pp.
1078
1082
.10.1038/nchem.2842
38.
Burke
,
M. P.
, and
Song
,
R.
,
2017
, “
Evaluating Mixture Rules for Multi-Component Pressure Dependence: H + O2 (+ M) = HO2 (+M)
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
245
253
.10.1016/j.proci.2016.06.068
39.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2017
, “
NO Formation in Rich Premixed Flames of C1-C4 Alkanes and Alcohols
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
627
635
.10.1016/j.proci.2016.06.108
40.
Versailles
,
P.
,
Watson
,
G. M.
,
Lipardi
,
A. C.
, and
Bergthorson
,
J. M.
,
2016
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1-C4 Alkanes
,”
Combust. Flame
,
165
, pp.
109
124
.10.1016/j.combustflame.2015.11.001
41.
Versailles
,
P.
,
2017
, “
CH Formation in Premixed Flames of C1–C4 Alkanes: Assessment of Current Chemical Modelling Capability Against Experiments
,” Ph.D. thesis, McGill University, Montreal, ON, Canada.
42.
Grcar
,
J. F.
,
Day
,
M. S.
, and
Bell
,
J. B.
,
2006
, “
A Taxonomy of Integral Reaction Path Analysis
,”
Combust. Theory Model.
,
10
(
4
), pp.
559
579
.10.1080/13647830600551917
43.
Guo
,
H.
,
Smallwood
,
G. J.
,
Liu
,
F.
,
Ju
,
Y.
, and
Gülder
,
Ö. L.
,
2005
, “
The Effect of Hydrogen Addition on Flammability Limit and NOx Emission in Ultra-Lean Counterflow CH4/Air Premixed Flames
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
303
311
.10.1016/j.proci.2004.08.177
44.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2016
, “
NO Formation in Premixed Flames of C1-C3 Alkanes and Alcohols
,”
Combust. Flame
,
169
, pp.
242
260
.10.1016/j.combustflame.2016.04.015
45.
Abian
,
M.
,
Alzueta
,
M. U.
, and
Glarborg
,
P.
,
2015
, “
Formation of NO from N2/O2 Mixtures in a Flow Reactor: Toward an Accurate Prediction of Thermal NO
,”
Int. J. Chem. Kinet.
,
47
(
8
), pp.
518
532
.10.1002/kin.20929
You do not currently have access to this content.