Abstract

In this paper, a novel one-dimensional matching method of an asymmetric twin-scroll turbine (ATST) with a small scroll bypass wastegate is initially presented for energy improvement. The developed method presents further insights into efficiency prediction of the ATST and the small scroll exhaust bypass in the matching process of model characterization. The efficiency of the small and large scroll turbines was approximately assessed with two times flow parameters of the small and large scroll turbines, respectively, as well as according to turbine efficiency prediction curves. Subsequently, given the matching results of a 9-L engine, a targeted ATST was developed; its effectiveness was verified by computational fluid dynamics (CFD) and the performance tests of a turbine and an engine. As revealed from the results, the prediction efficiency of the ATST well complies with that of the numerical calculation and performance tests of turbines and engines. Compared with the common large scroll exhaust bypass wastegate, the small one exhibits better engine performance and can save nearly 0.5–1.5% fuel consumption at middle and high engine speeds. Moreover, the reasons of which were explored for better understanding of the mechanism accordingly.

References

References
1.
Dwivedi
,
U.
,
Carpenter
,
C. D.
,
Guerry
,
E. S.
,
Polk
,
A. C.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2014
, “
Performance and Emissions Characteristics of Diesel-Ignited Gasoline Dual Fuel Combustion in a Single-Cylinder Research Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101504
.10.1115/1.4027273
2.
Morganti
,
K.
,
Al-Abdullah
,
M.
,
Alzubail
,
A.
,
Kalghatgi
,
G.
,
Viollet
,
Y.
,
Head
,
R.
,
Khan
,
A.
, and
Abdul-Manan
,
A.
,
2017
, “
Synergistic Engine-Fuel Technologies for Light-Duty Vehicles: Fuel Economy and Greenhouse Gas Emissions
,”
Appl. Energy
,
208
, pp.
1538
1561
.10.1016/j.apenergy.2017.08.213
3.
Zhang
,
H.
,
Zhang
,
L.
, and
Liu
,
X. Y.
,
2020
, “
Study on Preparation Stage and Mechanism of Modified Desulfurization Ash-Based Eco Rubber by X-Ray Diffraction
,”
Spectrosc. Spect. Anal.
,
40
(
2
), pp.
616
621
.10.3964/j.issn.1000-0593(2020)02-0616-06
4.
Xisto
,
C.
,
Petit
,
O.
, and
Grönstedt
,
T.
,
2019
, “
Assessment of CO2 and NOx Emissions in Intercooled Pulsed Detonation Turbofan Engines
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011016
.10.1115/1.4040741
5.
Tahmasebzadehbaie
,
M.
, and
Sayyaadi
,
H.
,
2016
, “
Efficiency Enhancement and NOx Emission Reduction of a Turbo-Compressor Gas Engine by Mass and Heat Recirculations of Flue Gases
,”
Appl. Therm. Eng.
,
99
, pp.
661
671
.10.1016/j.applthermaleng.2016.01.095
6.
Salehi
,
R.
,
Martz
,
J.
,
Stefanopoulou
,
A.
,
Vernham
,
B.
,
Uppalapati
,
L.
, and
Prashant Baliga
,
B.
,
2018
, “
Decentralized Feedback Control of Pumping Losses and NOx Emissions in Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102810
.10.1115/1.4040008
7.
Ko
,
J.
,
Jin
,
D.
,
Jang
,
W.
,
Myung
,
C. L.
,
Kwon
,
S.
, and
Park
,
S.
,
2017
, “
Comparative Investigation of NOx Emission Characteristics From a Euro 6-Compliant Diesel Passenger Car Over the NEDC and WLTC at Various Ambient Temperatures
,”
Appl. Energy
,
187
, pp.
652
662
.10.1016/j.apenergy.2016.11.105
8.
Tauzia
,
X.
,
Chesse
,
P.
,
Hetet
,
J. F.
, and
Thouvenel
,
N.
,
2008
, “
Measurement and Simulation of Instantaneous Emissions of a Heavy Truck Diesel Engine During Transients
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012807
.10.1115/1.2771254
9.
Luján
,
J. M.
,
Climent
,
H.
,
Novella
,
R.
, and
Rivas-Perea
,
M. E.
,
2015
, “
Influence of a Low Pressure EGR Loop on a Gasoline Turbocharged Direct Injection Engine
,”
Appl. Therm. Eng.
,
89
, pp.
432
443
.10.1016/j.applthermaleng.2015.06.039
10.
Oh
,
B.
,
Lee
,
M.
,
Park
,
Y.
,
Sohn
,
J.
,
Won
,
J.
, and
Sunwoo
,
M.
,
2013
, “
VGT and EGR Control of Common-Rail Diesel Engines Using an Artificial Neural Network
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012801
.10.1115/1.4007541
11.
Li
,
H.
, and
Karim
,
G. A.
,
2008
, “
Modeling the Performance of a Turbo-Charged Spark Ignition Natural Gas Engine With Cooled Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032804
.10.1115/1.2835058
12.
Jung
,
D.
,
Kim
,
H.
,
Hong
,
S.
,
Park
,
Y.
,
Lee
,
H.
,
Han
,
D.
,
Han
,
M.
, and
Sunwoo
,
M.
,
2018
, “
In-Cylinder Pressure-Based Low-Pressure-Cooled Exhaust Gas Recirculation Estimation Methods for Turbocharged Gasoline Direct Injection Engines
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
042801
.10.1115/1.4040578
13.
Hazard
,
H. R.
,
1974
, “
Reduction of NOx by EGR in a Compact Combuster
,”
ASME J. Eng. Gas Turbines Power
,
96
(
3
), pp.
235
239
.10.1115/1.3445799
14.
Wu
,
B.
,
Han
,
Z.
,
Yu
,
X.
,
Zhang
,
S.
,
Nie
,
X.
, and
Su
,
W.
,
2019
, “
A Method for Matching Two-Stage Turbocharger System and Its Influence on Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
054502
.10.1115/1.4039461
15.
Capobianco
,
M.
, and
Gambarotta
,
A.
,
1992
, “
Variable Geometry and Waste-Gated Automotive Turbochargers: Measurements and Comparison of Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
114
(
3
), pp.
553
560
.10.1115/1.2906624
16.
Terdich
,
N.
,
Martinez-Botas
,
R. F.
,
Romagnoli
,
A.
, and
Pesiridis
,
A.
,
2013
, “
Mild Hybridization Via Electrification of the Air System: Electrically Assisted and Variable Geometry Turbocharging Impact on an Off-Road Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031703
.10.1115/GT2013-95811
17.
Lee
,
H.
,
Han
,
M.
,
Sohn
,
J.
, and
Sunwoo
,
M.
,
2014
, “
Exhaust Pressure Estimation Using a Diesel Particulate Filter Mass Flow Model in a Light-Duty Diesel Engine Operated With Dual-Loop Exhaust Gas Recirculation and Variable Geometry Turbocharger Systems
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111507
.10.1115/1.4028018
18.
Walkingshaw
,
J.
,
Iosifidis
,
G.
,
Scheuermann
,
T.
,
Filsinger
,
D.
, and
Ikeya
,
N.
,
2015
, “
A Comparison of a Mono-, Twin-, and Double-Scroll Turbine for Automotive Applications
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052301
.10.1115/1.4031449
19.
Chen
,
T.
,
Zhuge
,
W.
,
Zheng
,
X.
,
Zhang
,
Y.
, and
He
,
Y.
,
2009
, “
Turbocharger Design for a 1.8 Liter Turbocharged Gasoline Engine Using an Integrated Method
,”
ASME
Paper No. GT2009-59951.10.1115/GT2009-59951
20.
Brinkert
,
N.
,
Sumser
,
S.
,
Weber
,
S.
,
Fieweger
,
K.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2012
, “
Understanding the Twin Scroll Turbine: Flow Similarity
,”
ASME J. Turbomach.
,
135
(
2
), p.
021039
.10.1115/1.4006607
21.
Serrano
,
J. R.
,
Arnau
,
F. J.
,
Dolz
,
V.
,
Tiseira
,
A.
,
Lejeune
,
M.
, and
Auffret
,
N.
,
2008
, “
Analysis of the Capabilities of a Two-Stage Turbocharging System to Fulfil the US2007 Anti-Pollution Directive for Heavy Duty Diesel Engines
,”
Int. J. Automot. Technol.
,
9
(
3
), pp.
277
288
.10.1007/s12239-008-0034-5
22.
Westin
,
F.
, and
Burenius
,
R.
,
2011
, “
Measurement of Interstage Losses of a Two Stage Turbocharger System in a Turbocharger Test Rig
,”
SAE
Paper No. 2010-01-1221.10.4271/2010-01-1221
23.
Saidur
,
R.
,
Rezaei
,
M.
,
Muzammil
,
W. K.
,
Hassan
,
M. H.
,
Paria
,
S.
, and
Hasanuzzaman
,
M.
,
2012
, “
Technologies to Recover Exhaust Heat From Internal Combustion Engines
,”
Renewable Sustainable Energy
,
16
(
8
), pp.
5649
5659
.10.1016/j.rser.2012.05.018
24.
Hatami
,
M.
,
Cuijpers
,
M. C. M.
, and
Boot
,
M. D.
,
2015
, “
Experimental Optimization of the Vanes Geometry for a Variable Geometry Turbocharger (VGT) Using a Design of Experiment (DoE) Approach
,”
Energy Convers. Manag.
,
106
, pp.
1057
1070
.10.1016/j.enconman.2015.10.040
25.
Zamboni
,
G.
, and
Capobianco
,
M.
,
2013
, “
Influence of High and Low Pressure EGR and VGT Control on in-Cylinder Pressure Diagrams and Rate of Heat Release in an Automotive Turbocharged Diesel Engine
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
586
596
.10.1016/j.applthermaleng.2012.09.040
26.
Glenn
,
B. C.
,
Upadhyay
,
D.
,
Utkin
,
V. I.
,
Washington
,
G. N.
, and
Hopka
,
M. B.
,
2011
, “
Observer Design of Critical States for Air Path Flow Regulation in a Variable Geometry Turbocharger Exhaust Gas Recirculation Diesel Engine
,”
Int. J. Eng. Res.
,
12
(
6
), pp.
501
512
.10.1177/1468087411409308
27.
Furukawa
,
H.
,
Yamaguchi
,
H.
,
Takagi
,
K.
, and
Okita
,
A.
,
1993
, “
Reliability on Variable Geometry Turbine Turbocharger
,”
SAE
Paper No. 930194.10.4271/930194
28.
Watson
,
N.
, and
Janota
,
M.
,
1982
,
Turbocharging the Internal Combustion Engine
,
Macmillan International Higher Education
, London.
29.
Schorn
,
N. A.
,
2014
, “
The Radial Turbine for Small Turbocharger Applications: Evolution and Analytical Methods for Twin-Entry Turbine Turbochargers
,”
SAE Int. J. Engines
,
7
(
3
), pp.
1422
1442
.10.4271/2014-01-1647
30.
Rajoo
,
S.
,
Romagnoli
,
A.
, and
Martinez-Botas
,
R. F.
,
2012
, “
Unsteady Performance Analysis of a Twin-Entry Variable Geometry Turbocharger Turbine
,”
Energy
,
38
(
1
), pp.
176
189
.10.1016/j.energy.2011.12.017
31.
Baert
,
R. S.
,
Beckman
,
D. E.
, and
Veen
,
A.
,
1999
, “
Efficient EGR Technology for Future HD Diesel Engine Emission Targets
,”
SAE Trans.
,
108
(
4
), pp.
381
393
.10.4271/1999-01-0837
32.
Müller
,
M.
,
Streule
,
T.
,
Sumser
,
S.
,
Hertweck
,
G.
,
Nolte
,
A.
, and
Schmid
,
W.
,
2008
, “
The Asymmetric Twin Scroll Turbine for Exhaust Gas Turbochargers
,”
ASME
Paper No. GT2008-50614.10.1115/GT2008-50614
33.
Schmidt
,
S.
,
Rose
,
M. G.
,
Müller
,
M.
,
Sumser
,
S.
,
Chebli
,
E.
,
Streule
,
T.
,
Stiller
,
M.
, and
Leweux
,
J.
,
2013
, “
Variable Asymmetric Turbine for Heavy Duty Truck Engines
,”
ASME
Paper No. GT2013-94590.10.1115/GT2013-94590
34.
Nielsen
,
B.
,
Sladek
,
W.
,
Müller
,
M.
, and
Eberle
,
F.
,
2016
, “
The Latest Heavy-Duty Engine Generation From Mercedes-Benz—Part 1: Aims and Design
,”
MTZ Worldwide
,
77
(
6
), pp.
48
53
.10.1007/s38313-016-0039-9
35.
Herrmann
,
H. O.
,
Kožuch
,
P.
,
Lettmann
,
H.
, and
Brünemann
,
R.
,
2016
, “
The Latest Heavy-Duty Engine Generation From Mercedes-Benz—Part 2: Combustion and Emissions
,”
MTZ Worldwide
,
77
(
7–8
), pp.
58
63
.10.1007/s38313-016-0067-5
36.
Krüger
,
W.
,
Kleffel
,
J.
,
Dietrich
,
P.
, and
Koch
,
D.
,
2012
, “
10.7-l Daimler HD Truck Engine for Euro VI and Tier 4
,”
MTZ Worldwide
,
73
(
12
), pp.
4
10
.10.1007/s38313-012-0246-y
37.
Palenschat
,
T.
,
Mueller
,
M.
,
Rajoo
,
S.
,
Chiong
,
M. S.
,
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Tan
,
F. X.
,
2018
, “
Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions
,”
SAE
Paper No. 2018-01-0971.10.4271/2018-01-0971
38.
Hand
,
M. J.
,
Hellström
,
E.
,
Kim
,
D.
,
Stefanopoulou
,
A.
,
Kollien
,
J.
, and
Savonen
,
C.
,
2013
, “
Model and Calibration of a Diesel Engine Air Path With an Asymmetric Twin Scroll Turbine
,”
ASME
Paper No. ICEF2013-19134.10.1115/ICEF2013-19134
39.
Xu
,
H. J.
,
Xie
,
A. Y.
, and
Yang
,
H. T.
,
2018
, “Study on
One-Dimensional Calculation Method of Asymmetric Turbocharger Matching Engines
,”
Mod. Veh. Power
,
171
(
3
), pp.
13
16
.en.cnki.com.cn/Article_en/CJFDTotal-XDCY201803002.htm
40.
Zhu
,
D.
, and
Zheng
,
X.
,
2017
, “
Asymmetric Twin-Scroll Turbocharging in Diesel Engines for Energy and Emission Improvement
,”
Energy
,
141
, pp.
702
714
.10.1016/j.energy.2017.07.173
41.
Zhu
,
D.
, and
Zheng
,
X.
,
2018
, “
A New Asymmetric Twin-Scroll Turbine With Two Wastegates for Energy Improvements in Diesel Engines
,”
Appl. Energy
,
223
, pp.
263
272
.10.1016/j.apenergy.2018.04.078
42.
Zhu
,
D.
, and
Zheng
,
X.
,
2019
, “
Fuel Consumption and Emission Characteristics in Asymmetric Twin-Scroll Turbocharged Diesel Engine With Two Exhaust Gas Recirculation Circuits
,”
Appl. Energy
,
238
, pp.
985
995
.10.1016/j.apenergy.2019.01.188
43.
Zhu
,
D.
, and
Zheng
,
X.
,
2019
, “
Potential for Energy and Emissions of Asymmetric Twin-Scroll Turbocharged Diesel Engines Combining Inverse Brayton Cycle System
,”
Energy
,
179
, pp.
581
592
.10.1016/j.energy.2019.05.028
44.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
, Design of Radial Turbomachines, Longman Scientific and Technical, New York.
45.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
, Concepts NREC, White River Junction, VT.
46.
Kitson
,
S. T.
,
1992
, “
Aerodynamic Investigation of Radial Turbines Using Computational Methods
,” VKI Radial Turbines, Belgium.
You do not currently have access to this content.