Abstract

For the quantitative dynamic analysis of aero gas turbines, accurate modal parameters must be identified. However, the complicated structure of thin-walled casings may cause false mode identification and mode absences if conventional methods are used, which makes it more difficult to identify the modal parameters. A modal parameter identification method based on improved covariance-driven stochastic subspace identification (covariance-driven SSI) is proposed. The ability to reduce the number of mode absences and the solving stability are improved by a covariance matrix dimension control method. Meanwhile, the number of false mode identification is reduced via a false mode elimination method. In addition, the real mode complementation and the excitation frequency mode screening can be realized by a multispeed excitation method. The numerical results of a typical rotor model and measured data of an aero gas turbine validated the proposed method.

References

References
1.
Kun
,
F.
,
Zhenqiao
,
Z.
, and
Yanfei
,
Z.
,
2019
, “
A Reverse Method of Unbalance Response at Bearing Position of Thin-Walled Casing Engines
,”
J. Vib. Shock.
2.
Mbarek
,
A.
,
Del Rincon
,
A. F.
,
Hammami
,
A.
,
Iglesias
,
M.
,
Chaari
,
F.
,
Viadero
,
F.
, and
Haddar
,
M.
,
2018
, “
Comparison of Experimental and Operational Modal Analysis on a Back to Back Planetary Gear
,”
Mech. Mach. Theory
,
124
, pp.
226
247
.10.1016/j.mechmachtheory.2018.03.005
3.
Gupta
,
T. C.
,
2019
, “
Parametric Studies on Dynamic Stiffness of Ball Bearings Supporting a Flexible Rotor
,”
J. Vib. Control
,
25
(
15
), pp.
2175
2188
.10.1177/1077546319856147
4.
Yufei
,
L.
,
Kegui
,
X.
,
Jiansheng
,
F.
, and
Dingyu
,
C.
,
2014
, “
A Review of Structure Modal Identification Methods Through Ambient Excitation
,”
Eng. Mech.
,
31
(
4
), pp.
46
53
.10.6052/j.issn.1000-4750.2012.11.0873
5.
Zhifang
,
F.
, and
Hongxing
,
H.
,
2000
,
Modal Analysis Theory and Application
,
Shanghai Jiao Tong University Press
,
Shanghai, China
.
6.
Naderpour
,
H.
, and
Fakharian
,
P.
,
2016
, “
A Synthesis of Peak Picking Method and Wavelet Packet Transform for Structural Modal Identification
,”
KSCE J. Civ. Eng.
,
20
(
7
), pp.
2859
2867
.10.1007/s12205-016-0523-4
7.
Bayraktar
,
A.
,
Türker
,
T.
, and
Altunişik
,
A. C.
,
2015
, “
Experimental Frequencies and Damping Ratios for Historical Masonry Arch Bridges
,”
Constr. Build. Mater.
,
75
, pp.
234
241
.10.1016/j.conbuildmat.2014.10.044
8.
Javh
,
J.
,
Slavic
,
J.
, and
Boltezar
,
M.
,
2018
, “
High Frequency Modal Identification on Noisy High-Speed Camera Data
,”
Mech. Syst. Signal Process.
,
98
, pp.
344
351
.10.1016/j.ymssp.2017.05.008
9.
Ibrahim
,
S. R.
, and
Mikulcik
,
E.
,
1977
, “
A Method for the Direct Identification of Vibration Parameter From the Free Response
,”
Shock Vib. Bull.
,
47
(
4
), pp.
183
198
.https://ntrs.nasa.gov/search.jsp?R=19800070016
10.
Kaloop
,
M. R.
, and
Hu
,
J. W.
,
2016
, “
Dynamic Performance Analysis of the Towers of a Long-Span Bridge Based on GPS Monitoring Technique
,”
J. Sens.
,
2016
, pp.
1
14
.10.1155/2016/7494817
11.
Luczak
,
M. M.
,
Telega
,
J.
,
Zagato
,
N.
, and
Mucchi
,
E.
,
2019
, “
On the Damage Detection of a Laboratory Scale Model of a Tripod Supporting Structure by Vibration-Based Methods
,”
Mar. Struct.
,
64
, pp.
146
160
.10.1016/j.marstruc.2018.11.002
12.
Bajric
,
A.
, and
Hogsberg
,
J.
,
2018
, “
Estimation of Hysteretic Damping of Structures by Stochastic Subspace Identification
,”
Mech. Syst. Signal Process.
,
105
, pp.
36
50
.10.1016/j.ymssp.2017.11.042
13.
Reynders
,
E.
,
Maes
,
K.
,
Lombaert
,
G.
, and
De Roeck
,
G.
,
2016
, “
Uncertainty Quantification in Operational Modal Analysis With Stochastic Subspace Identification: Validation and Applications
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
13
30
.10.1016/j.ymssp.2015.04.018
14.
Xie
,
Y.
,
Liu
,
P.
, and
Cai
,
G. P.
,
2016
, “
Modal Parameter Identification of Flexible Spacecraft Using the Covariance-Driven Stochastic Subspace Identification (SSI-COV) Method
,”
Acta Mech. Sin.
,
32
(
4
), pp.
710
719
.10.1007/s10409-016-0579-x
15.
Priori
,
C.
,
De
,
A. M.
, and
Betti
,
R.
,
2018
, “
On the Selection of User-Defined Parameter in Data-Driven Stochastic Subspace Identification
,”
Mech. Syst. Signal Process.
,
100
, pp.
501
523
.10.1016/j.ymssp.2017.07.045
16.
Golafshan
,
R.
, and
Sanliturk
,
K. Y.
,
2016
, “
SVD and Hankel Matrix Based de-Noising Approach for Ball Bearing Fault Detection and Its Assessment Using Artificial Faults
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
36
50
.10.1016/j.ymssp.2015.08.012
17.
Kressner
,
D.
, and
Luce
,
R.
,
2018
, “
Fast Computation of the Matrix Exponential for a Toeplitz Matrix
,”
SIAM J. Matrix Anal. Appl.
,
39
(
1
), pp.
23
47
.10.1137/16M1083633
18.
Wang
,
Y.
,
Hang
,
X. C.
, and
Jiang
,
D.
,
2015
, “
Selection Method of Toeplitz Matrix Row Number Based on Covariance Driven Stochastic Subspace Identification
,”
J. Vib. Shock
,
34
(
7
), pp.
71
75
.10.13465/j.cnki.jvs.2015.07.011
19.
Xin
,
J. F.
,
2012
, “
Study on Modal Parameter Identification of Offshore Platform Structures Based on Stochastic Subspace Algorithm
,”
Ocean Univ. China
, pp.
103
104
.
20.
Huber
,
S. E.
, and
Trummer
,
M. R.
,
2016
, “
Radial Basis Functions for Solving Differential Equations: Ill-Conditioned Matrices and Numerical Stability
,”
Comput. Math. Appl.
,
71
(
1
), pp.
319
327
.10.1016/j.camwa.2015.11.013
21.
Gui
,
Q. M.
, and
Guo
,
J. F.
,
2005
, “
Solving Ill-Conditioning Observation Equations Via Truncated SVD
,”
Trans. Nonferrous Met. Soc. China
,
15
(
s1
), pp.
134
136
.https://www.researchgate.net/publication/260311899_Solving_ill-conditioning_observation_equations_via_truncated_SVD
You do not currently have access to this content.