Abstract

The aim of this work is to analyze the behavior of the fuel flexible Ansaldo ARI100 T2 microgas turbine (MGT) combustor operated with mixtures having different H2, CH4, and CO2 concentrations. This combustor is going to be installed on an in-house modified Turbec T100 P MGT, which is originally equipped with a methane fired combustor. In a previous study, the combustor was simulated with a H2 enriched syngas, whose Wobbe index was within the limits imposed by the syngas supply system of an Ansaldo test bench. In this study, this constraint has been removed to gain a deeper understanding on how the fuel mixture properties (composition, heating value, and laminar flame speed) affect combustor performance. To this end, a series of Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) simulations have been carried out on the full-scale 3D geometry of the combustion chamber, at full and partial load (50%), evaluating for each case combustion efficiency as well as NOx and CO emissions.

References

1.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2013
, “
Extinction of Laminar, Premixed, Counter-Flow Methane/Air Flames Under Unsteady Conditions: Effect of H2 Addition
,”
Chem. Eng. Sci.
,
93
(
2013
), pp.
266
276
.10.1016/j.ces.2013.02.009
2.
Miao
,
H.
,
Lu
,
L.
, and
Huang
,
Z.
,
2011
, “
Flammability Limits of Hydrogen-Enriched Natural Gas
,”
Int. J. Hydrogen Energy
,
36
(
11
), pp.
6937
6947
.10.1016/j.ijhydene.2011.02.126
3.
Goeckeler
,
K.
,
Krueger
,
O.
, and
Paschereit
,
C. O.
,
2015
, “
Laminar Burning Velocities and Emissions of Hydrogen-Methane-Air-Steam Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031503
.10.1115/1.4028460
4.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
5.
Oluyede
,
E.
, and
Jeffrey
,
P.
,
2007
, “
Fundamental Impact of Firing Syngas in Gas Turbines
,”
ASME
Paper No. GT2007-27385.10.1115/GT2007-27385
6.
Cozzi
,
F.
, and
Coghe
,
A.
,
2006
, “
Behavior of Hydrogen-Enriched Non-Premixed Swirled Natural Gas Flames
,”
Int. J. Hydrogen Energy
,
31
(
6
), pp.
669
677
.10.1016/j.ijhydene.2005.05.013
7.
Ilbas
,
M.
,
Yilmaz
,
I.
, and
Kaplan
,
Y.
,
2005
, “
Investigations of Hydrogen and Hydrogen-Hydrocarbon Composite Fuel Combustion and NOx Emission Characteristics in a Model Combustor
,”
Int. J. Hydrogen Energy
,
30
(
10
), pp.
1139
1147
.10.1016/j.ijhydene.2004.10.016
8.
Coppens
,
F. H. V.
,
De Ruyck
,
J.
, and
Konnov
,
A. A.
,
2007
, “
Effects of Hydrogen Enrichment on Adiabatic Burning Velocity and NO Formation in Methane+Air Flames
,”
Exp. Therm. Fluid Sci.
,
31
(
5
), pp.
437
444
.10.1016/j.expthermflusci.2006.04.012
9.
Naha
,
S.
, and
Aggarwal
,
S. K.
,
2004
, “
Fuel Effects on NOx Emissions in Partially Premixed Flames
,”
Combust. Flame
,
139
(
1–2
), pp.
90
105
.10.1016/j.combustflame.2004.07.006
10.
Alavandi
,
S. K.
, and
Agrawal
,
A. K.
,
2008
, “
Experimental Study of Combustion of Hydrogen–Syngas/Methane Fuel Mixtures in a Porous Burner
,”
Int. J. Hydrogen Energy
,
33
(
4
), pp.
1407
1415
.10.1016/j.ijhydene.2007.12.005
11.
De Bobbio
,
R.
,
2017
, “
Innovative Combustion Analysis of a Micro-Gas Turbine Burner Supplied With Hydrogen-Natural Gas Mixtures
,”
Energy Procedia
,
126
(
201709
), pp.
858
866
.10.1016/j.egypro.2017.08.291
12.
Abagnale
,
C.
,
Cameretti
,
M. C.
,
De Robbio
,
R.
, and
Tuccillo
,
R.
,
2016
, “
CFD Study of a MGT Combustor Supplied With Syngas
,”
Energy Procedia
,
101
, pp.
933
940
.10.1016/j.egypro.2016.11.118
13.
Othman
,
N. F.
, and
Boosroh
,
M. H.
,
2016
, “
Effect of H2 and CO Contents in Syngas During Combustion Using Micro Gas Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
32
, p.
012037
.10.1088/1755-1315/32/1/012037
14.
Yang
,
C. H.
,
Lee
,
C. C.
,
Hsiao
,
J. H.
, and
Chen
,
C. H.
,
2009
, “
Numerical Analyses and Experiment Investigations of an Annular Micro Gas Turbine Power System Using Fuels With Low Heating Values
,”
Sci. China Ser. E-Tech. Sci.
,
52
(
12
), pp.
3565
3579
.10.1007/s11431-009-0312-0
15.
Laranci
,
P.
,
Bursi
,
E.
, and
Fantozzi
,
F.
,
2011
, “
Numerical Analysis of a Microturbine Combustion Chamber Modified for Biomass Derived Syngas
,”
ASME
Paper No. GT2011-45551.10.1115/GT2011-45551
16.
Laranci
,
P.
,
Bursi
,
E.
, and
Fantozzi
,
F.
,
2011
, “
Numerical Analysis of Biomass-Derived Gaseous Fuels Fired in a RQL Micro Gas Turbine Combustion Chamber: Preliminary Results
,”
ASME
Paper No. GT2011-45807.10.1115/GT2011-45807
17.
Liu
,
C.-R.
, and
Shih
,
H.-Y.
,
2014
, “
Model Analysis of Syngas Combustion and Emission for a Micro Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061507
.10.1115/GT2014-25589
18.
Ghenai
,
C.
,
2010
, “
Combustion of Syngas Fuel in Gas Turbine Can Combustor
,”
Adv. Mech. Eng.
,
2
, p.
342357
.10.1155/2010/342357
19.
Cappelletti
,
A.
,
Martelli
,
F.
,
Bianchi
,
E.
, and
Trifoni
,
E.
,
2014
, “
Numerical Redesign of 100 kw MGT Combustor for 100% H2 Fueling
,”
Energy Procedia
,
45
(
2014
), pp.
1412
1421
.10.1016/j.egypro.2014.01.148
20.
Reale
,
F.
,
Calabria
,
R.
,
Chiariello
,
F.
,
Pagliara
,
R.
, and
Massoli
,
P.
,
2012
, “
A Micro Gas Turbine Fuelled by Methane-Hydrogen Blends
,”
Appl. Mech. Mater. Trans. Tech. Publ.
,
232
, pp.
792
796
.10.4028/www.scientific.net/AMM.232.792
21.
Cadorin
,
M.
,
Pinelli
,
M.
,
Vaccari
,
A.
,
Calabria
,
R.
,
Chiariello
,
F.
,
Massoli
,
P.
, and
Bianchi
,
E.
,
2011
, “
Analysis of a Micro Gas Turbine Fed by Natural Gas and Synthesis Gas: MGT Test Bench and Combustor CFD Analysis
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071401
.10.1115/1.4005977
22.
Delattin
,
F.
,
Di Lorenzo
,
G.
,
Rizzo
,
S.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2010
, “
Combustion of Syngas in a Pressurized Microturbine-Like Combustor: Experimental Results
,”
Appl. Energy
,
87
(
4
), pp.
1441
1452
.10.1016/j.apenergy.2009.08.046
23.
Bo
,
A.
,
Giacomazzi
,
E.
,
Messina
,
G.
, and
Di Nardo
,
A.
,
2018
, “
Analysis of a Fuel Flexible Micro Gas Turbine Combustor Through Numerical Simulations
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121504
.10.1115/1.4040737
24.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure: Present… and Future
?,”
Inter. J. Heat Fluid Flow
,
10
(
4
), pp.
282
300
.10.1016/0142-727X(89)90017-9
25.
Nanduri
,
J. R.
,
Celik
,
I. B.
,
Strakey
,
P. A.
, and
Parsons
,
D. R.
,
2007
, “
Assessment of RANS-Based Turbulent Combustion Models for Prediction of Gas Turbine Emissions: Turbulence Model and Reaction Mechanism Effects
,”
Fall Technical Meeting Eastern States Section of the Combustion Institute
, University of Virginia, Charlottesville, VA, Oct. 21–24.https://www.researchgate.net/publication/237547048_Assessment_of_RANS-based_turbulent_combustion_models_for_prediction_of_gas_turbine_emissions_Turbulence_model_and_reaction_mechanism_effects
26.
Flohr
,
P.
,
Schmitt
,
P.
, and
Paschereit
,
C. O.
,
2002
, “
Mixing Field Analysis of a Gas Turbine Burner
,”
ASME
Paper No. IMECE2002-39317, pp. 45–53
. 10.1115/IMECE2002-39317
27.
Mori
,
G.
,
Razore
,
S.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2001
, “
Integrated Experimental and Numerical Approach for Fuel-Air Mixing Prediction in a Heavy-Duty Gas Turbine LP Burner
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
803
809
.10.1115/1.1378297
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
29.
Magnussen
,
B. F.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
Nineteenth AIAA Meeting, St. Louis, MI
.10.2514/6.1981-42
30.
Funke
,
H. H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
An Overview on Dry Low NOx Micromix Combustor Development for Hydrogen-Rich Gas Turbine Applications
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6978
6990
.10.1016/j.ijhydene.2019.01.161
31.
Minsung
,
C.
,
Yonmo
,
S.
,
Myungjun
,
W.
,
Yeseul
,
P.
,
Minkuk
,
K.
,
Gyungmin
,
C.
, and
Duckjool
,
K.
,
2017
, “
Effect of Fuel Distribution on Turbulence and Combustion Characteristics of a Micro Gas Turbine Combustor
,”
J. Ind. Eng. Chem.
,
48
, pp.
24
35
.10.1016/j.jiec.2016.11.020
32.
Benim
,
A. C.
,
Iqbal
,
S.
,
Meier
,
W.
,
Joos
,
F.
, and
Wiedermann
,
A.
,
2017
, “
Numerical Investigation of Turbulent Swirling Flames With Validation in a Gas Turbine Model Combustor
,”
Appl. Therm. Eng.
,
110
, pp.
202
212
.10.1016/j.applthermaleng.2016.08.143
33.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Said
,
S. A.
, and
Habib
,
M. A.
,
2016
, “
Characteristics of H2-Enriched CH4-O2 Diffusion Flames in a Swirl-Stabilized Gas Turbine Combustor: Experimental and Numerical Study
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
20418
20432
.10.1016/j.ijhydene.2016.08.144
34.
van Oijen
,
A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated-Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
35.
Smooke
,
M. D.
,
Puri
,
I. K.
, and
Seshadri
,
K.
,
1988
, “
A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air
,”
Proc. Combust. Inst.
,
21
(
1
), pp.
1783
1792
.10.1016/S0082-0784(88)80412-0
36.
Coppalle
,
A.
, and
Vervisch
,
P.
,
1983
, “
The Total Emissivities of High-Temperature Flames
,”
Combust. Flame
,
49
(
1–3
), pp.
101
108
.10.1016/0010-2180(83)90154-2
37.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
602
608
.10.1115/1.3245174
38.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2018
, “GRI-Mech 3.0,” accessed Jan. 12, 2018, http://combustion.berkeley.edu/gri-mech/version30/text30.html
39.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2015
, “
OpenSMOKE++: An Object-Oriented Framework for the Numerical Modeling of Reactive Systems With Detailed Kinetic Mechanisms
,”
Comput. Phys. Commun.
,
192
, pp.
237
264
.10.1016/j.cpc.2015.02.014
40.
Ponti
,
G.
, et al.,
2014
, “
The Role of Medium Size Facilities in the HPC Ecosystem: The Case of the New CRESCO4 Cluster Integrated in the ENEAGRID Infrastructure
,”
Proceedings of the International Conference on High Performance Computing and Simulation
, Bologna, Italy, July 21–25, pp.
1030
1033
. 10.1109/HPCSim.2014.6903807
You do not currently have access to this content.