Abstract

The innovative ultra-compact combustor (UCC) is an alternative to traditional turbine engine combustors and has been shown to reduce the combustor length and offer potential improvements in combustion efficiency. Prior UCC configurations featured a circumferential combustion cavity positioned around the outside diameter (OD) of the engine. This configuration would be difficult to implement in a vehicle with a small, fixed diameter and had difficulty migrating the hot combustion products at the OD radially inward across an axial core flow to present a uniform temperature distribution to the first turbine stage. This study draws from preliminary computational analysis which enabled experimental testing of a new UCC configuration that featured a smaller diameter circumferential cavity that exhausted axially into a dilution zone positioned just upstream of the nozzle guide vanes. The combustor was sized as a replacement burner for the JetCat P90 RXi small-scale turbine engine and fit inside the engine casing. This combustor configuration achieved a 33% length reduction compared to the stock JetCat combustor and achieved comparable engine performance across a limited operating range. Self-sustained engine operation was achieved with a rotating compressor and turbine making this study the first to achieve operation of a UCC-powered turbine engine.

References

1.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2013
, “
Analysis of Flow Migration in an Ultra-Compact Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051502
.10.1115/1.4007866
2.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Performance Characterization of a Circumferential Combustion Cavity
,”
AIAA
Paper No. 2018-4922.10.2514/6.2018-4922
3.
Rathsack
,
T.
,
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2019
, “
Experimental Analysis of an Additively Manufactured Cooled Ultra Compact Combustor Vane
,”
ASME
Paper No. GT2019-91425.10.1115/.GT2019-91425
4.
Lewis
,
G. D.
,
1973
, “
Swirling Flow Combustion - Fundamentals and Application
,”
AIAA
Paper No. 73-1250.10.2514/6.73-1250
5.
Briones
,
A. M.
,
Sekar
,
B.
, and
Erdmann
,
T. J.
,
2015
, “
Effect of Centrifugal Force on Turbulent Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
011501
.10.1115/1.4028057
6.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
A New Spin on Small-Scale Combustor Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011504
10.1115/1.4040658.
7.
Wilson
,
J. D.
,
Damele
,
C. J.
, and
Polanka
,
M. D.
,
2014
, “
Flame Structure Effects at High G-Loading
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101502
.10.1115/1.4027128
8.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2015
, “
Optimization of Ultra Compact Combustor Flow Path Splits
,”
AIAA
Paper No. 2015-0100.10.2514/6.2015-0100
9.
Damele
,
C. J.
,
Polanka
,
M. D.
,
Wilson
,
J. D.
, and
Rutledge
,
J. L.
,
2014
, “
Characterizing Thermal Exit Conditions for an Ultra Compact Combustor
,”
AIAA
Paper No. 2014-0456.10.2514/6.2014-0456
10.
Gilbert
,
N. A.
,
Cottle
,
A. E.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2016
, “
Enhancing Flow Migration and Reducing Emissions in Full Annular Ultra Compact Combustor
,”
AIAA
Paper No. 2016-2122.10.2514/6.2016-2122
11.
Cottle
,
A. E.
,
Gilbert
,
N. A.
, and
Polanka
,
M. D.
,
2016
, “
Mechanisms for Enhanced Flow Migration From an Annular High-g Ultra Compact Combustor
,”
AIAA
Paper No. 2016-1392.10.2514.6/2016-1392
12.
Hornedo
,
E. A.
,
Bohan
,
B. T.
,
Cottle
,
A. E.
,
Schmiedel
,
C.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2017
, “
Design Strategy for Product Migration From a Circumferential Combustion Cavity
,”
AIAA
Paper No. 2017-0390.10.2514/6.2017-0390
13.
Yonezawa
,
Y.
,
Toh
,
H.
,
Goto
,
S.
, and
Obata
,
M.
,
1990
, “
Development of the Jet-Swirl High Loading Combustor
,”
AIAA
Paper No. 90-2451.10.2514/6.90-2451
14.
Mattingly
,
J. D.
,
2006
,
Elements of Propulsion: Gas Turbines and Rockets
,
AIAA
,
Reston, VA
.
15.
Samuelsen
,
S.
,
2006
, “
Conventional Type Combustion
,”
The Gas Turbine Handbook
,
U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL)
,
Morgantown, WV
, Report No. DOE/NETL-2006-1230.
16.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on High Pressure Turbine Vane Aerodynamics and Heat Transfer
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
.10.1115/GT2006-90277
17.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Hornedo
,
E. A.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Design Strategy for Fuel Introduction to a Circumferential Combustion Cavity
,”
AIAA
Paper No. 2018-1876.10.2514/6.2018-1876
18.
Turns
,
S. R.
,
1996
,
An Introduction to Combustion
, 2nd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.