Abstract

In order to propose the control strategies based on exergy to realize efficient and energy-saving operation of the engine, the energy and exergy balance under sensitive boundary conditions were analyzed with the first and second laws of thermodynamics on a six-cylinders, four strokes, turbocharged, intercooled, and high-pressure common rail diesel/natural gas (NG) dual-fuel engine in this paper. The results depicted that the thermal efficiency and exergy efficiency decrease with the increase of NG percentage energy substitution rate (PES). Compared with other conditions, at medium load, 1978 rpm and 90% PES, the exergy destruction caused by irreversibility process including mixing combustion, heat transfer and mechanical friction reaches 72.33%. With the advance of diesel injection time (Tinj), thermal efficiency and energy fraction of heat transfer increase first and then decrease. However, diesel injection pressure (Pinj) has little effect on improving energy utilization. Compared with single diesel injection, appropriate multiple diesel injection can improve combustion performance and energy utilization. When the first Tinj is 35 deg CA BTDC and second Tinj is 25 deg CA BTDC, nearly 50% of the energy lost in heat transfer can be converted into useful work. The lost exergy can be reduced by choosing appreciate Tinj and Pinj, adding exhaust gas recirculation (EGR) to reduce in-cylinder temperature to improve combustion and using thermal insulation materials to reduce heat transfer or using the lost heat in other processes such as preheating intake air and producing the hot water or steam of external consumption to reduce the exergy destruction.

References

1.
Johnson
,
T.
,
2011
, “
Diesel Emissions in Review
,”
SAE. Int. J. Engines
,
4
(
1
), pp.
143
–1
57
.10.4271/2011-01-0304
2.
Stone
,
R.
,
1999
,
Introduction to Internal Combustion Engine
,
SAE International and Macmillan Press
, Houndmills, Hampshire, UK/London.
3.
Poompipatpong
,
C.
, and
Cheenkachorn
,
K.
,
2011
, “
A Modified Diesel Engine for Natural Gas Operation: Performance and Emission Tests
,”
Energy
,
36
(
12
), pp.
6862
6866
.10.1016/j.energy.2011.10.009
4.
Papagiannakis
,
R. G.
, and
Hountalas
,
D. T.
,
2003
, “
Experimental Investigation Concerning the Effect of Natural Gas Percentage on Performance and Emissions of a DI Dual Fuel Diesel Engine
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
353
365
.10.1016/S1359-4311(02)00187-4
5.
Papagiannakis
,
R. G.
, and
Hountalas
,
D. T.
,
2004
, “
Combustion and Exhaust Emission Characteristics of a Dual Fuel Compression Ignition Engine Operated With Pilot Diesel Fuel and Natural Gas
,”
Energy Convers. Manage.
,
45
(
18–19
), pp.
2971
2987
.10.1016/j.enconman.2004.01.013
6.
Papagiannakis
,
R. G.
,
Hountalas
,
D. T.
, and
Rakopoulos
,
C. D.
,
2007
, “
Theoretical Study of the Effects of Pilot Fuel Quantity and Its Injection Timing on the Performance and Emissions of a Dual Fuel Diesel Engine
,”
Energy Convers. Manage.
,
48
(
11
), pp.
2951
2961
.10.1016/j.enconman.2007.07.003
7.
Papagiannakis
,
R. G.
,
2013
, “
Study of Air Inlet Preheating and EGR Impacts for Improving the Operation of Compression Ignition Engine Running Under Dual Fuel Mode
,”
Energy Convers. Manage.
,
68
, pp.
40
53
.10.1016/j.enconman.2012.12.019
8.
Papagiannakis
,
R. G.
,
Krishnan
,
S. R.
,
Rakopoulos
,
D. C.
,
Srinivasan
,
K. K.
, and
Rakopoulos
,
C. D.
,
2017
, “
A Combined Experimental and Theoretical Study of Diesel Fuel Injection Timing and Gaseous Fuel/Diesel Mass Ratio Effects on the Performance and Emissions of Natural Gas-Diesel HDDI Engine Operating at Various Loads
,”
Fuel
,
202
, pp.
675
687
.10.1016/j.fuel.2017.05.012
9.
Wang
,
Z.
,
Zhao
,
Z.
,
Wang
,
D.
,
Tan
,
M.
,
Han
,
Y.
,
Liu
,
Z.
, and
Dou
,
H.
,
2016
, “
Impact of Pilot Diesel Ignition Mode on Combustion and Emissions Characteristics of a Diesel/Natural Gas Dual Fuel Heavy-Duty Engine
,”
Fuel
,
167
, pp.
248
256
.10.1016/j.fuel.2015.11.077
10.
Wang
,
Z.
,
Chen
,
W.
,
Wang
,
D.
,
Tan
,
M.
,
Liu
,
Z.
, and
Dou
,
H.
,.
2016
, “
A Novel Combustion Evaluation Method Based on In-Cylinder Pressure Traces for Diesel/Natural Gas Dual Fuel Engines
,”
Energy
,
115
, pp.
1130
1137
.10.1016/j.energy.2016.09.030
11.
Wang
,
Z.
,
Du
,
G.
,
Wang
,
D.
,
Xu
,
Y.
, and
Shao
,
M.
,.
2018
, “
Combustion Process Decoupling of a Diesel/Natural Gas Dual-Fuel Engine at Low Loads
,”
Fuel
,
232
, pp.
550
561
.10.1016/j.fuel.2018.05.152
12.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2006
, “
Second-Law Analyses Applied to Internal Combustion Engines Operation
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
2
47
.10.1016/j.pecs.2005.10.001
13.
Ertunc Tat
,
M.
,
2011
, “
Cetane Number Effect on the Energetic and Exergetic Efficiency of a Diesel Engine Fuelled With Biodiesel
,”
Fuel Process. Technol.
,
92
(
7
), pp.
1311
1321
.10.1016/j.fuproc.2011.02.006
14.
Aghbashlo
,
M.
,
Tabatabaei
,
M.
,
Hosseini
,
S. S.
,
Younesi
,
H.
, and
Najafpour
,
G.
,
2016
, “
Exergy Analysis for Decision Making on Operational Condition of a Continuous Photobioreactor for Hydrogen Production Via WGS Reaction
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
2354
2366
.10.1016/j.ijhydene.2015.12.070
15.
Aghbashlo
,
M.
,
Tabatabaei
,
M.
,
Dadak
,
A.
,
Younesi
,
H.
, and
Najafpour
,
G.
,
2016
, “
Exergy-Based Performance Analysis of a Continuous Stirred Bioreactor for Ethanol and Acetate Fermentation From Syngas Via WoodeLjungdahl Pathway
,”
Chem. Eng. Sci.
,
143
, pp.
36
46
.10.1016/j.ces.2015.12.013
16.
Tsatsaronis
,
G.
,
2007
, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
,
32
(
4
), pp.
249
253
.10.1016/j.energy.2006.07.002
17.
Hoseinpour
,
M.
,
Sadrnia
,
H.
,
Tabasizadeh
,
M.
, and
Ghobadian
,
B.
,
2017
, “
Energy and Exergy Analyses of a Diesel Engine Fueled With Diesel, Biodiesel-Diesel Blend and Gasoline Fumigation
,”
Energy
,
141
, pp.
2408
–24
20
.10.1016/j.energy.2017.11.131
18.
Bejan
,
A.
,
1988
,
Advanced Engineering Thermodynamics
,
Wiley
,
Hoboken, NJ
.
19.
Michael
,
J. M.
, and
Howard
,
N. S.
,
2000
,
Fundamentals of Engineering Thermodynamics
,
McGraw-Hill
,
New York
.
20.
Kanoglu
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2008
, “
Exergetic Performance Investigation of a Turbocharged Stationary Diesel Engine
,”
Int. J. Exergy
,
5
(
2
), pp.
193
203
.10.1504/IJEX.2008.016675
21.
Zheng
,
J.
, and
Caton
,
J. A.
,
2012
, “
Second Law Analysis of a Low Temperature Combustion Diesel Engine: Effect of Injection Timing and Exhaust Gas Recirculation
,”
Energy
,
38
(
1
), pp.
78
84
.10.1016/j.energy.2011.12.034
22.
Da Costa
,
Y. J. R.
,
de Lima
,
A. G. B.
,
Bezerra Filho
,
C. R.
, and
de Araujo Lima
,
L.
,
2012
, “
Energetic and Exergetic Analyses of a Dual-Fuel Diesel Engine
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
4651
4660
.10.1016/j.rser.2012.04.013
23.
Van Gerpen
,
J. H.
, and
Shapiro
,
H. N.
,
1990
, “
Second-Law Analysis of Diesel Engine Combustion
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
129
–1
37
.10.1115/1.2906467
24.
Rakopoulos
,
C. D.
, and
Kyritsis
,
D. C.
,
2001
, “
Comparative Second-Law Analysis of Internal Combustion Engine Operation for Methane, Methanol, and Dodecane Fuels
,”
Energy
,
26
(
7
), pp.
705
–7
22
.10.1016/S0360-5442(01)00027-5
25.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2006
, “
Comparative First-and Second-Law Parametric Study of Transient Diesel Engine Operation
,”
Energy
,
31
(
12
), pp.
1927
1942
.10.1016/j.energy.2005.10.022
26.
Durgun
,
O.
, and S
ahin
,
Z.
,
2009
, “
Theoretical Investigation of Heat Balance in Direct Injection (DI) Diesel Engines for Neat Diesel Fuel and Gasoline Fumigation
,”
Energy Convers. Manage.
,
50
(
1
), pp.
43
51
.10.1016/j.enconman.2008.09.007
27.
Ajav
,
E.
,
Singh
,
B.
, and
Bhattacharya
,
T.
,
2000
, “
Thermal Balance of a Single Cylinder Diesel Engine Operating on Alternative Fuels
,”
Energy Convers. Manage.
,
41
(
14
), pp.
1533
1541
.10.1016/S0196-8904(99)00175-2
28.
Sekmen
,
P.
, and
Yılbaşı
,
Z.
,
2011
, “
Application of Energy and Exergy Analyses to a CI Engine Using Biodiesel Fuel
,”
Math. Comput. Appl.
,
16
(
4
), pp.
797
808
.10.3390/mca16040797
29.
Khoobbakht
,
G.
,
Akram
,
A.
,
Karimi
,
M.
, and
Najafi
,
G.
,
2016
, “
Exergy and Energy Analysis of Combustion of Blended Levels of Biodiesel, Ethanol and Diesel Fuel in a DI Diesel Engine
,”
Appl. Therm. Eng.
,
99
, pp.
720
729
.10.1016/j.applthermaleng.2016.01.022
30.
Aghbashlo
,
M.
,
Tabatabaei
,
M.
,
Mohammadi
,
P.
,
Mirzajanzadeh
,
M.
,
Ardjmand
,
M.
, and
Rashidi
,
A.
,
2016
, “
Effect of an Emission-Reducing Soluble Hybrid Nanocatalyst in Diesel/Biodiesel Blends on Exergetic Performance of a DI Diesel Engine
,”
Renewable Energy
,
93
, pp.
353
368
.10.1016/j.renene.2016.02.077
31.
Canakci
,
M.
, and
Hosoz
,
M.
,
2006
, “
Energy and Exergy Analyses of a Diesel Engine Fuelled With Various Biodiesels
,”
Energy Source Part B
,
1
(
4
), pp.
379
394
.10.1080/15567240500400796
32.
Caliskan
,
H.
,
Tat
,
M. E.
,
Hepbasli
,
A.
, and
Van Gerpen
,
J. H.
,
2010
, “
Exergy Analysis of Engines Fuelled With Biodiesel From High Oleic Soybeans Based on Experimental Values
,”
Int. J. Exergy
,
7
(
1
), pp.
20
36
.10.1504/IJEX.2010.029612
33.
López
,
I.
,
Quintana
,
C. E.
,
Ruiz
,
J. J.
,
Cruz-Peragón
,
F.
, and
Dorado
,
M. P.
,
2014
, “
Effect of the Use of Olive-Pomace Oil Biodiesel/Diesel Fuel Blends in a Compression Ignition Engine: Preliminary Exergy Analysis
,”
Energy Convers. Manage.
,
85
, pp.
227
233
.10.1016/j.enconman.2014.05.084
34.
Ozkan
,
M.
,
2015
, “
A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed With Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure
,”
Entropy
,
17
(
1
), pp.
244
263
.10.3390/e17010244
35.
Rakopoulos
,
C.
, and
Giakoumis
,
E.
,
2004
, “
Availability Analysis of a Turbocharged Diesel Engine Operating Under Transient Load Conditions
,”
Energy
,
29
(
8
), pp.
1085
1104
.10.1016/j.energy.2004.02.028
36.
Reifarth
,
S.
,
Tillmark
,
N.
, and
Ångstrom
,
H.-E.
,
2015
, “
Exergy and Energy Analysis of High-Pressure and Low-Pressure Exhaust Gas Recirculation System of a Diesel Engine
,”
Int. J. Exergy
,
17
(
3
), pp.
313
334
.10.1504/IJEX.2015.070501
37.
Gharehghani
,
A.
,
Hosseini
,
R.
,
Mirsalim
,
M.
, and
Yusaf
,
T. F.
,
2015
, “
A Comparative Study on the First and Second Law Analysis and Performance Characteristics of a Spark Ignition Engine Using Either Natural Gas or Gasoline
,”
Fuel
,
158
, pp.
488
493
.10.1016/j.fuel.2015.05.067
38.
Aghbashlo
,
M.
,
Tabatabaei
,
M.
,
Mohammadi
,
P.
,
Pourvosoughi
,
N.
,
Nikbakht
,
A. M.
, and
Goli
,
S. A. H.
,
2015
, “
Improving Exergetic and Sustainability Parameters of a DI Diesel Engine Using Polymer Waste Dissolved in Biodiesel as a Novel Diesel Additive
,”
Energy Convers. Manage.
,
105
, pp.
328
337
.10.1016/j.enconman.2015.07.075
39.
Tsurushima
,
T.
,
Harada
,
A.
,
Iwashiro
,
Y.
,
Enomoto
,
Y.
,
Asaumi
,
Y.
, and
Aoyagi
,
Y.
,
2001
, “
Thermodynamic Characteristics of Premixed Compression Ignition Combustions
,”
SAE
Paper No. 2001-01-1891
. 10.4271/2001-01-1891
40.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2014
, “
Exergetic and Energetic Evaluations of Hybrid Lectric Vehicle Thermal Management Systems
,”
Int. J. Exergy
,
14
(
3
), pp.
341
363
.10.1504/IJEX.2014.061033
41.
Fu
,
J.
,
Liu
,
J.
,
Feng
,
R.
,
Yang
,
Y.
,
Wang
,
L.
, and
Wang
,
Y.
,
2013
, “
Energy and Exergy Analysis on Gasoline Engine Based on Mapping Characteristics Experiment
,”
Appl. Energy
,
102
, pp.
622
630
.10.1016/j.apenergy.2012.08.013
42.
Sezer
,
I.
, and
Bilgin
,
A.
,
2013
, “
Effects of Charge Properties on Exergy Balance in Spark Ignition Engines
,”
Fuel
,
112
, pp.
523
530
.10.1016/j.fuel.2012.09.078
43.
Sangi
,
R.
, and
Muller
,
D.
,
2019
, “
Application of the Second Law of Thermodynamics to Control: A Review
,”
Energy
,
174
, pp.
938
953
.10.1016/j.energy.2019.03.024
44.
Changcheng
,
L.
,
Zhongchang
,
L.
,
Jing
,
T.
,
Yongqiang
,
H.
,
Yun
,
X.
, and
Zeyu
,
Y.
,
2019
, “
Comprehensive Investigation of Injection Parameters Effect on a Turbocharged Diesel Engine Based on Detailed Exergy Analysis
,”
Appl. Therm. Eng.
,
154
, pp.
343
357
.10.1016/j.applthermaleng.2019.03.116
45.
Changcheng
,
L.
,
Zhongchang
,
L.
,
Jing
,
T.
,
Yun
,
X.
,
Zeyu
,
Y.
, and
Penghui
,
W.
,
2020
, “
Detailed Study of Key Boundary Parameters Influence on a Turbocharged Diesel Engine Based on Thermodynamic Analysis
,”
Appl. Therm. Eng.
,
165
, p.
114553
.10.1016/j.applthermaleng.2019.114553
You do not currently have access to this content.