Abstract

A turbocharger turbine is exposed to pulsating flow conditions when it is connected to an engine exhaust system due to the opening and closing of the exhaust valves. However, many radial turbines are designed and tested under steady-state conditions without taking into account these unsteady exhaust flows. In order to seek the optimal aerodynamic design of a radial flow turbine (RFT) under pulsating flow conditions, the present research utilizes a numerical simulation approach to optimize the blade shape of a small-scale mixed flow turbine (MFT) under 50 Hz pulses. This corresponds to a four-stroke, three-cylinder engine rotating at 2000 rpm. In order to understand how a less computationally intensive, steady-state optimization compares, the blade shape was also optimized using the peak power point of the pulse. Three turbine features were modified during the optimization process, including blade cone angle, blade axial location, and blade camber angles. The optimization was carried out using a computational fluid dynamics (CFD)–genetic algorithm (GA) coupled approach, targeting at maximizing both energy-weighted efficiency and energy output during a predefined pulse period. To ensure that the new design maintains a similar matching to the engine, the maximum deviation of turbine swallowing capacity is controlled to within ±5% of the baseline for all new blade designs. The design that achieves the maximum pulse cycle-averaged efficiency was produced from unsteady optimization, with a performance benefit of 0.66%. The unsteady optimization also produced a blade shape that delivers the maximum energy output, with an improvement of 5.42%.

References

References
1.
Fajardo
,
P.
,
2012
, “
Methodology for the Numerical Characterization of a Radial Turbine Under Steady and Pulsating Flow
,”
Ph.D. thesis
,
Universidad Politécnica de Valencia
, Valencia, Spain.https://riunet.upv.es/bitstream/handle/10251/16878/tesisUPV3883.pdf
2.
Turner
,
J.
,
Pearson
,
R.
, and
Kenchington
,
S.
,
2005
, “
Concepts for Improved Fuel Economy From Gasoline Engines
,”
Int. J. Engine Res.
,
6
(
2
), pp.
137
157
.10.1243/146808705X7419
3.
Turner
,
J. W. G.
,
Popplewell
,
A.
,
Patel
,
R.
,
Johnson
,
T. R.
,
Darnton
,
N. J.
,
Richardson
,
S.
,
Bredda
,
S. W.
,
Tudor
,
R. J.
,
Bithell
,
C. I.
,
Jackson
,
R.
,
Remmert
,
S. M.
,
Cracknell
,
R. F.
,
Fernandes
,
J. X.
,
Lewis
,
A. G. J.
,
Akehurst
,
S.
,
Brace
,
C. J.
,
Copeland
,
C.
,
Martinez-Botas
,
R.
,
Romagnoli
,
A.
, and
Burluka
,
A. A.
,
2014
, “
Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing
,”
SAE Int. J. Engines
,
7
(
1
), pp.
387
417
.10.4271/2014-01-1185
4.
Hu
,
B.
,
Akehurst
,
S.
, and
Brace
,
C.
,
2016
, “
Novel Approaches to Improve the Gas Exchange Process of Downsized Turbocharged Spark-Ignition Engines: A Review
,”
Int. J. Engine Res.
,
17
(
6
), pp.
595
618
.10.1177/1468087415599866
5.
Hountalas
,
D.
,
Katsanos
,
C.
, and
Lamaris
,
V.
,
2007
, “
Recovering Energy From the Diesel Engine Exhaust Using Mechanical and Electrical Turbocompounding
,”
SAE
Paper No. 2007-01-1563.10.4271/2007-01-1563
6.
Lu
,
P.
,
Brace
,
C.
,
Hu
,
B.
, and
Copeland
,
C.
,
2017
, “
Analysis and Comparison of the Performance of an Inverted Brayton Cycle and Turbocompounding With Decoupled Turbine and Continuous Variable Transmission Driven Compressor for Small Automotive Engines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072801
.10.1115/1.4035600
7.
Copeland
,
C. D.
, and
Chen
,
Z.
,
2016
, “
The Benefits of an Inverted Brayton Bottoming Cycle as an Alternative to Turbocompounding
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
071701
.10.1115/1.4031790
8.
Chen
,
Z.
,
Copeland
,
C.
,
Ceen
,
B.
,
Jones
,
S.
, and
Goya
,
A. A.
,
2017
, “
Modeling and Simulation of an Inverted Brayton Cycle as an Exhaust-Gas Heat-Recovery System
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
081701
.10.1115/1.4035738
9.
Kennedy
,
I.
,
Chen
,
Z.
,
Ceen
,
B.
,
Jones
,
S.
, and
Copeland
,
C. D.
,
2019
, “
Experimental Investigation of an Inverted Brayton Cycle for Exhaust Gas Energy Recovery
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032301
.10.1115/1.4041109
10.
Kennedy
,
I.
,
Chen
,
Z.
,
Ceen
,
B.
,
Jones
,
S.
, and
Copeland
,
C. D.
,
2018
, “
Inverted Brayton Cycle With Exhaust Gas Condensation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
111702
.10.1115/1.4039811
11.
Chen
,
Z.
, and
Copeland
,
C. D.
,
2015
, “
Inverted Brayton Cycle Employment for a Highly Downsized Turbocharged Gasoline Engine
,”
SAE
Paper No. 2015-01-1973.10.4271/2015-01-1973
12.
Karamanis
,
N.
, and
Martinez-Botas
,
R.
,
2002
, “
Mixed-Flow Turbines for Automotive Turbochargers: Steady and Unsteady Performance
,”
Int. J. Engine Res.
,
3
(
3
), pp.
127
138
.10.1243/14680870260189253
13.
Abidat
,
M.
,
Baines
,
N.
, and
Firth
,
M.
,
1992
, “
Design of a Highly Loaded Mixed Flow Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
206
(
2
), pp.
95
107
.10.1243/PIME_PROC_1992_206_016_02
14.
Rajoo
,
S.
, and
Martinez-Botas
,
R.
,
2008
, “
Mixed Flow Turbine Research: A Review
,”
ASME J. Turbomach.
,
130
(
4
), p.
044001
.10.1115/1.2812326
15.
Chen
,
H.
, and
Baines
,
N.
,
1992
, “
Analytical Optimization Design of Radial and Mixed Flow Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
206
(
3
), pp.
177
187
.10.1243/PIME_PROC_1992_206_028_02
16.
Leonard
,
T.
,
Spence
,
S.
,
Early
,
J.
, and
Filsinger
,
D.
,
2013
, “
A Numerical Study of Automotive Turbocharger Mixed Flow Turbine Inlet Geometry for Off Design Performance
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
, p.
042012
.10.1088/1757-899X/52/4/042012
17.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
, “
Design of Radial Turbomachines
,” Longman Scientific & Technical, New York.
18.
Romagnoli
,
A.
, and
Martinez-Botas
,
R.
,
2011
, “
Performance Prediction of a Nozzled and Nozzleless Mixed-Flow Turbine in Steady Conditions
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
557
574
.10.1016/j.ijmecsci.2011.05.003
19.
Mamat
,
A. M. B.
, and
Martinez-Botas
,
R. F.
,
2010
, “
Mean Line Flow Model of Steady and Pulsating Flow of a Mixed-Flow Turbine Turbocharger
,”
ASME
Paper No. GT2010-22441.10.1115/GT2010-22441
20.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
, and
Moazami
,
N.
,
2015
, “
Parametric Analysis and Optimization of a Small-Scale Radial Turbine for Organic Rankine Cycle
,”
Energy
,
83
, pp.
696
711
.10.1016/j.energy.2015.02.079
21.
Liu
,
Z.
, and
Copeland
,
C.
,
2018
, “
New Method for Mapping Radial Turbines Exposed to Pulsating Flows
,”
Energy
,
162
, pp.
1205
1222
.10.1016/j.energy.2018.08.107
22.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R.
, and
Moazami
,
N.
,
2016
, “
One-Dimensional and Three-Dimensional Numerical Optimization and Comparison of Single-Stage Supersonic and Dual-Stage Transonic Radial Inflow Turbines for the Orc
,”
ASME
Paper No. POWER2016-59508.10.1115/POWER2016-59508
23.
Bouhlel
,
M. A.
,
Bartoli
,
N.
,
Otsmane
,
A.
, and
Morlier
,
J.
,
2016
, “
Improving Kriging Surrogates of High-Dimensional Design Models by Partial Least Squares Dimension Reduction
,”
Struct. Multidiscip. Optim.
,
53
(
5
), pp.
935
952
.10.1007/s00158-015-1395-9
24.
Al Jubori
,
A. M.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2017
, “
Performance Enhancement of a Small-Scale Organic Rankine Cycle Radial-Inflow Turbine Through Multi-Objective Optimization Algorithm
,”
Energy
,
131
, pp.
297
311
.10.1016/j.energy.2017.05.022
25.
Mueller
,
L.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
,
2013
, “
Multidisciplinary Optimization of a Turbocharger Radial Turbine
,”
ASME J. Turbomach.
,
135
(
2
), p.
021022
.10.1115/1.4007507
26.
Tüchler
,
S.
,
Chen
,
Z.
, and
Copeland
,
C. D.
,
2018
, “
Multipoint Shape Optimisation of an Automotive Radial Compressor Using a Coupled Computational Fluid Dynamics and Genetic Algorithm Approach
,”
Energy
,
165
, pp.
543
561
.10.1016/j.energy.2018.09.076
27.
Copeland
,
C.
,
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2012
, “
A Comparison of Pulsed Flow Timescales Within a Turbine Stage
,”
Tenth IMECHE International Conference on Turbochargers and Turbocharging
, London, UK, May 15–16.https://researchportal.bath.ac.uk/en/publications/a-comparison-of-pulsed-flow-timescales-within-a-turbine-stage
28.
Cao
,
T.
,
Xu
,
L.
,
Yang
,
M.
, and
Martinez-Botas
,
R. F.
,
2014
, “
Radial Turbine Rotor Response to Pulsating Inlet Flows
,”
ASME J. Turbomach.
,
136
(
7
), p.
071003
.10.1115/1.4025948
29.
Padzillah
,
M.
,
Rajoo
,
S.
, and
Martinez-Botas
,
R.
,
2018
, “
A Detailed Comparison on the Influence of Flow Unsteadiness Between the Vaned and Vaneless Mixed-Flow Turbocharger Turbine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
042601
.10.1115/1.4038076
30.
Khairuddin
,
U.
,
Costall
,
A. W.
, and
Martinez-Botas
,
R. F.
,
2015
, “
Influence of Geometrical Parameters on Aerodynamic Optimization of a Mixed-Flow Turbocharger Turbine
,”
ASME
Paper No. GT2015-42053.10.1115/GT2015-42053
31.
Galindo
,
J.
,
Fajardo
,
P.
,
Navarro
,
R.
, and
García-Cuevas
,
L.
,
2013
, “
Characterization of a Radial Turbocharger Turbine in Pulsating Flow by Means of CFD and Its Application to Engine Modeling
,”
Appl. Energy
,
103
, pp.
116
127
.10.1016/j.apenergy.2012.09.013
32.
Hellström
,
F.
,
2010
, “
Numerical Computations of the Unsteady Flow in Turbochargers
,”
Ph.D. thesis
, KTH, Stockholm, Sweden.https://www.mech.kth.se/thesis/2010/phd/phd_2010_fredrik_hellstrom.pdf
33.
Hanjalic
,
I. K.
,
Nagano
,
Y.
, and
Tummers
,
M.
,
2003
, “
Ten Years of Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
, pp.
625
632
.
34.
ANSYS
,
2018
, “
Release 18.1: Ansys CFX-Solver Theory Guide
,” ANSYS, Canonsburg, PA.
35.
Kelecy
,
F. J.
,
2008
, “
Coupling Momentum and Continuity Increases CFD Robustness
,”
ANSYS Advantage
,
2
(
2
), pp.
49
51
.https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-coupling-momentum-and-continuity.pdf
36.
Pesiridis
,
A.
,
Lioutas
,
S.
, and
Martinez-Botas
,
R. F.
,
2012
, “
Integration of Unsteady Effects in the Turbocharger Design Process
,”
ASME
Paper No. GT2012-69053.10.1115/GT2012-69053
37.
Copeland
,
C. D.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2012
, “
Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions
,”
ASME J. Turbomach.
,
134
(
2
), p.
021022
.10.1115/1.4003171
38.
Szymko
,
S.
,
Martinez-Botas
,
R.
, and
Pullen
,
K.
,
2005
, “
Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions
,”
ASME
Paper No. GT2005-68878.10.1115/GT2005-68878
39.
Palenschat
,
T.
,
Newton
,
P.
,
Martinez-Botas
,
R. F.
,
Müller
,
M.
, and
Leweux
,
J.
,
2017
, “
3-D Computational Loss Analysis of an Asymmetric Volute Twin-Scroll Turbocharger
,”
ASME
Paper No. GT2017-64190.10.1115/GT2017-64190
40.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
41.
Newton
,
P.
,
Palenschat
,
T.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2015
, “
Entropy Generation Rate in a Mixed Flow Turbine Passage
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov. 15-20, pp.
15
20
.
42.
Davidson
,
P. A.
,
2015
,
Turbulence: An Introduction for Scientists and Engineers
,
Oxford University Press
, Oxford, UK.
You do not currently have access to this content.