Abstract

This paper assesses a parallel electric hybrid propulsion system utilizing simple and recuperated cycle gas turbine configurations. An adapted engine model capable to reproduce a turboshaft engine steady state and transient operation is built in Simcenter Amesim and used as a baseline for a recuperated engine. The transient operation of the recuperated engine is assessed for different values of heat exchanger effectiveness, quantifying the engine lag and the surge margin reduction which are results of the heat exchanger addition. An oil and gas (OAG) mission of a twin engine medium helicopter has been used for assessing the parallel hybrid configuration. The thermoelectric system brings a certain level of flexibility allowing for better engine utilization, thus first a hybrid configuration based on simple cycle gas turbine scaled down from the baseline engine is assessed in terms of performance and weight. Following the recuperated engine, thermoelectric power plant is assessed and the performance enhancement is compared against the simple cycle conventional and hybrid configurations. The results indicate that a recuperated gas turbine based thermo-electric power plant may provide significant fuel economy despite the increased weight. At the same time, the electric power train can be used to compensate for the reduced specific power and potentially for the throttle response change due to the heat exchanger addition.

References

1.
Airbus
,
2016
, “
Global Market Forecast, Mapping Demand 2016/2035
,” Airbus SAS, Blagnac, France, Report.
2.
D'Ippolito
,
R.
,
Stevens
,
J.
,
Pachidis
,
V.
,
Berta
,
A.
,
Goulos
,
I.
, and
Rizzi
,
C.
,
2009
, “
A Multidisciplinary Simulation Framework for Optimization of Rotorcraft Operations and Environmental Impact
,”
Second International Conference on Engineering Optimization
(
EngOpt
2010), Lisbon, Portugal, Sept. 6–9, pp.
6
9
.https://www.researchgate.net/publication/261488558_A_Multidisciplinary_Simulation_Framework_For_Optimization_Of_Rotorcraft_Operations_And_Environmental_Impact
3.
Smith
,
C.
,
Pachidis
,
V.
,
Castillo Pardo
,
A.
,
Gires
,
E.
,
Stevens
,
J.
,
Thevenot
,
L.
, and
d'Ippolito
,
R.
,
2015
, “
Achieving Rotorcraft Noise and Rmissions Reduction for ‘Clean Sky’—The Measurement of Success
,”
Fifth CEAS Air and Space Conference—Challenges in European Aerospace
, Delft, The Netherlands, Sept. 7–11, Paper No. 41.
4.
Clarke
,
J.-P.
,
2003
, “
The Role of Advanced Air Traffic Management in Reducing the Impact of Aircraft Noise and Enabling Aviation Growth
,”
J. Air Transp. Manage.
,
9
(
3
), pp.
161
165
.10.1016/S0969-6997(02)00080-7
5.
Kirner
,
R.
,
Raffaelli
,
L.
,
Rolt
,
A.
,
Laskaridis
,
P.
,
Doulgeris
,
G.
, and
Singh
,
R.
,
2015
, “
An Assessment of Distributed Propulsion: Advanced Propulsion System Architectures for Conventional Aircraft Configurations
,”
Aerosp. Sci. Technol.
,
46
, pp.
42
50
.10.1016/j.ast.2015.06.022
6.
Kyprianidis
,
G. K.
,
Grönstedt
,
T.
,
Ogaji
,
S. O. T.
,
Pilidis
,
P.
, and
Singh
,
R.
,
2010
, “
Assessment of Future Aero-Engine Designs With Intercooled and Intercooled Recuperated Cores
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011701
.10.1115/1.4001982
7.
Voskuijl
,
M.
,
van Bogaert
,
J.
, and
Rao
,
A. G.
,
2018
, “
Analysis and Design of Hybrid Electric Regional Turboprop Aircraft
,”
CEAS Aeronaut. J.
,
9
(
1
), pp.
15
25
.10.1007/s13272-017-0272-1
8.
Bradley
,
M.
,
Droney
,
C.
,
Paisley
,
D.
,
Roth
,
B.
,
Gowda
,
S.
, and
Kirby
,
M.
,
2010
, “
NASA N+3 Subsonic Ultra Green Aircraft Research SUGAR Final Review
,”
Boeing Research and Technology
, Huntington Beach, CA.
9.
Vratny
,
C. P.
,
Forsbach
,
F.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2014
, “
Investigation of Universally Electric Propulsion Systems for Transport Aircraft
,”
29th Congress of the International Council of the Aeronautical Sciences
, St. Petersburg, Russia, Sept. 7–12, Paper No. 0744.https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0744_paper.pdf
10.
Kailos
,
N. C.
,
1967
, “
Increased Helicopter Capability Through Advanced Power Plant Technology
,”
J. Am. Helicopter Soc.
,
12
(
3
), pp.
1
15
.10.4050/JAHS.12.3.1
11.
Privoznik
,
E. J.
,
1968
, “
Allison T63 Regenerative Engine Program
,”
J. Am. Helicopter Soc.
,
13
(
4
), pp.
56
63
.10.4050/JAHS.13.4.56
12.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part II: Engine Design Studies Following Early Development Testing
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
3
), pp.
280
294
.10.1108/00022660810873719
13.
Xu
,
L.
,
Kyprianidis
,
K. G.
, and
Grönstedt
,
T. U. J.
,
2013
, “
Optimization Study of an Intercooled Recuperated Aero-Engine
,”
J. Propul. Power
,
29
(
2
), pp.
424
432
.10.2514/1.B34594
14.
Fakhre
,
A.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2015
, “
An Integrated Methodology to Assess the Operational and Environmental Performance of a Conceptual Regenerative Helicopter
,”
Aeronaut. J.
,
119
, pp.
1
24
.10.1017/S0001924000010253
15.
Roumeliotis
,
I.
,
Nikolaidis
,
T.
,
Pachidis
,
V.
,
Broca
,
O.
, and
Unlu
,
D.
,
2018
, “
Dynamic Simulation of a Rotorcraft Hybrid Engine in Amesim
,”
44th European Rotorcraft Forum
, Delft, The Netherlands, Sept. 19–20, Paper No. 55.
16.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part III: Engine Concepts for Reduced Emissions, Lower Fuel Consumption, and Noise Abatement
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
4
), pp.
408
426
.10.1108/00022660810882773
17.
Wortmann
,
G.
,
Schmitz
,
O.
, and
Hornung
,
M.
,
2014
, “
Comparative Assessment of Transient Characteristics of Conventional and Hybrid Turbine Engine
,”
CEAS Aeronaut J.
,
5
(
2
), pp.
209
223
.10.1007/s13272-014-0101-8
18.
Vratny
,
P. C.
,
Kaiser
,
S.
,
Seitz
,
A.
, and
Donnerhack
,
S.
,
2017
, “
Performance Investigation of Cycle-Integrated Parallel Hybrid Turboshafts
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031201
.10.1115/1.4034498
19.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Blackwell Science
,
Oxford, UK
.
20.
Kurzke
,
J.
,
2007
, “
About Simplifications in Gas Turbine Performance Calculations
,”
ASME
Paper No. GT2007-27620. 10.1115/GT2007-27620
21.
AGARD
,
1995
, “
Recommended Practices for the Assessment of the Effects of Atmospheric Water Ingestion on the Performance and Operability of Gas Turbine Engines
,” North Atlantic Treaty Organization, Linthicum Heights, MD, Report No. AGARD-AR-332.
22.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Smith
,
M.
, and
Papailiou
,
K. D.
,
1990
, “
Gas Turbine Component Fault Identification by Means of Adaptive Performance Modelling
,”
ASME
Paper No. 90-GT-376. 10.1115/90-GT-376
23.
Basendwah
,
A. A.
,
Pilidis
,
P.
, and
Li
,
Y. G.
, “
Turbine Off-Line Water Wash Optimization Approach for Power Generation
,”
ASME
Paper No. GT2006-90244. 10.1115/GT2006-90244
24.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion, Alternative Fuels and Emissions
, 3rd ed.,
Taylor and Francis Group, LLC
, Boca Raton, FL.
25.
McBride
,
J. B.
,
Zehe
,
J. M.
, and
Gordon
,
S.
,
2002
, “
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,” National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field, Cleveland, OH, Report No. NASA/TP-2002-211556.
26.
International Organization for Standardization
,
1975
, “
Standard Atmosphere
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 2533:1975.
27.
NASA
,
1976
, “
U.S. Standard Atmosphere
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-TM-X-74335.
28.
Department of Defense Standard Practice
,
2013
, “
Glossary of Definitions, Ground Rules, and Mission Profiles to Define Air Vehicle Performance Capability
,” ASC/ENRS, Wright-Patterson AFB, OH, Standard No. MIL-STD-3013.
29.
Military Handbook
,
1997
, “
Military Handbook: Global Climatic Data for Developing Military Products
,” AFRL/VSBE, Hanscom AFB, MA, Standard No. MIL-HDBK-310.
30.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
, Society for Industrial and Applied Mathematics,
North-Holland
,
The Netherlands
.
31.
Lapidus
,
L.
, and
Seinfeld
,
J.
,
1971
,
Numerical Solution of Ordinary Differential Equations
,
Academic Press
, New York.
32.
Petzold
,
L. R.
,
1983
, “
Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations
,”
SIAM J. Sci. Stat. Comput.
,
4
(
1
), pp.
136
148
.10.1137/0904010
33.
Roumeliotis
,
I.
,
Aretakis
,
N.
, and
Mathioudakis
,
K.
,
2003
, “
Performance Analysis of Twin-Spool Water Injected Gas Turbines Using Adaptive Modelling
,”
ASME
Paper No. GT2003-38516. 10.1115/GT2003-38516
34.
Roumeliotis
,
I.
,
Aretakis
,
N.
, and
Alexiou
,
A.
,
2017
, “
Industrial Gas Turbine Health and Performance Assessment With Field Data
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051202
.10.1115/1.4034986
35.
Nkoi
,
B.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2013
, “
Performance Assessment of Simple and Modified Cycle Turboshaft Gas Turbines
,”
Propul. Power Res.
,
2
(
2
), pp.
96
106
.10.1016/j.jppr.2013.04.009
36.
Pachidis
,
V.
,
1999
,
The Turbomatch Scheme; for Aero/Industrial Gas Turbine Engine Design Point/Off Design Performance Calculation, Manual
,
Cranfield University
,
UK
.
37.
Ballin
,
M. G.
,
1988
, “
A High Fidelity Real-Time Simulation of a Small Turboshaft Engine
,” NASA Ames Research Center, Moffett Field, CA, NASA Technical Memorandum 100991.
38.
Gunston
,
B.
,
1996
, “
General Electric Aircraft Engine Business Group. Model Specification for T700-GE-700 Turboshaft Engine—Part I
,” Jane’s Aero Engines Book, Surrey, UK, Report No. 1983.
39.
Kurzke
,
J.
,
2002
, “
Performance Modelling Methodology: Efficiency Definitions for Cooled Single and Multistage Turbines
,”
ASME
Paper No. GT-2002-30497. 10.1115/GT-2002-30497
40.
Horobin
,
M. S.
,
1999
, “
Cycle-Match Engine Models Used in Functional Engine Design—An Overview
,”
RTO Meeting Proceedings: MP-8 Design Principles and Methods for Aircraft Gas Turbine Engines
, Toulouse, France, May 11–15, pp.
44.1
44.22
.
41.
Maria
,
V. C.
,
Garcia Rosa
,
N.
, and
Carbonneau
,
X.
,
2016
, “
Sensitivity Analysis and Experimental Validation of Transient Performance Predictions for a Short-Range Turbofan
,”
ASME
Paper No. GT2016-57257. 10.1115/GT2016-57257
42.
Juhasz
,
A. J.
,
2010
, “
A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers
,”
Eighth International Energy Conversion Engineering Conference (IECEC)
, American Institute of Aeronautics and Astronautics, Nashville, TN, July 25–28, Paper No.
NASA/TM-2010-216799
.
43.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part I: Early Development Activities
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
2
), pp.
139
157
.10.1108/00022660810859364
44.
Lolis
,
P.
,
2014
, “
Development of a Novel Preliminary Aero Engine Weight Estimation Method
,” Ph.D. thesis, Propulsion Engineering Centre, Cranfield University, Cranfield, UK.
45.
Pera
,
R. J.
,
Onat
,
E.
,
Klees
,
G. W.
, and
Tjonneland
,
E.
,
1977
, “
A Method to Estimate Weight and Dimensions of Aircraft Gas Turbine Engines
,” Volume 1: Method of Analysis Final Report, NASA, Washington, DC, Report No. NASA-CR-135170.
46.
Bruce
,
G. P.
,
Freunberger
,
A. S.
,
Hardwick
,
J. L.
, and
Tarascon
,
J.
,
2011
, “
Li-O2 and Li-S Batteries With High Energy Storage
,”
Nat. Mater.
,
11
(
1
), pp.
19
29
.
47.
Vratny
,
C. P.
,
Pornet
,
C.
,
Isikveren
,
T. A.
, and
Hornung
,
M.
,
2013
, “
Battery Pack Modeling Methods for Universally-Electric Aircraft
,”
Fourth CEAS Air and Space Conference
, Linköping, Sweden, Sept. 16–19, Paper No.
21
.
48.
Brombach
,
J.
,
Schröter
,
T.
,
Lucken
,
A.
, and
Schulz
,
D.
,
2012
, “
Optimizing the Weight of an Aircraft Power Supply System Through a +/- 270 VDC Main Voltage
,” Przeglad Elektrotechniczny, Helmut-Schmidt-University, Airbus Operations GmbH, Hamburg, Germany.
49.
Brown
,
V. G.
,
2011
, “
Weights and Efficiencies of Electric Components of a Turboelectric Aircraft Propulsion System
,”
AIAA
Paper No. 2011-225. 10.2514/6.2011-225
50.
Rucker
,
J. E.
,
2012
, “
Design and Analysis of a Permanent Magnet Generator for Naval Applications
,” MSc thesis, MIT, Boston, MA.
51.
Goulos
,
I.
,
2012
, “
Simulation Framework Development for the Multidisciplinary Optimization of Rotorcraft
,” Ph.D. thesis, Cranfield University, Cranfield, UK.
52.
Carretero
,
J. O.
,
Pardo
,
C. A.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2018
, “
Impact of Adverse Environmental Conditions on Rotorcraft Operational Performance and Pollutant Emissions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021201
.10.1115/1.4037751
53.
Goulos
,
I.
,
Giannakakis
,
P.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2013
, “
Mission Performance Simulation of Integrated Helicopter–Engine Systems Using an Aeroelastic Rotor Model
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091201
.10.1115/1.4024869
54.
McDonald
,
R. A.
,
2014
, “
Electric Propulsion Modeling for Conceptual Aircraft Design
,”
AIAA
Paper No. 2014-0536. 10.2514/6.2014-0536
55.
National Academies of Sciences, Engineering, and Medicine,
2016
,
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,
The National Academies Press
,
Washington, DC
.
You do not currently have access to this content.