Abstract

Influence of curvature distribution and area-ratio (AR) distribution on the pressure fields within the curved annular diffuser are discussed. General guidelines for end-wall contouring to control the pressure gradients on the diffuser walls are evolved and further demonstrated through computational fluid dynamics (CFD) simulations. Also, detailed guidelines for controlling the adverse pressure gradients (APG) on duct walls are presented. A geometry generation methodology (GGM) which enables both design and evaluation of curved annular diffusers based on the guidelines evolved is presented. The approach presented deals with the sensitivity of the duct performance parameters to duct wall modifications. In that sense, the work per se is not a description of an automated optimization process, but rather about the physical principles that can guide such an optimization. An aggressive diffuser design space is identified with ducts of maximum slope of 50 deg and maximum divergence angle between the outer and inner walls of 10 deg for length to inlet height ratio ranging from 1.25 to 2.5. Part of the identified design space for which the flow separation can be eliminated based on the guidelines evolved is demarcated. The need for flow control, possibly passive, is established for more aggressive designs.

References

1.
Gottlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Elsevier, Prog. Aerosp. Sci.
,
47
, pp.
249
279
.10.1016/j.paerosci.2011.01.002
2.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1996
, “
The Influence of Blade Wakes on the Performance of Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
118
(
2
), pp.
347
352
.10.1115/1.2836649
3.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
120
(
2
), pp.
298
304
.10.1115/1.2841406
4.
Xingen
,
L.
,
Han
,
G.
, and
Junqiang
,
Z.
,
2016
, “
Flow and Loss Mechanisms Within an Interturbine Duct
,”
AIAA. J. Propul. Power
,
32
(
3
), pp.
734
742
.10.2514/1.B35927
5.
Sanz
,
W.
,
Kelterer
,
M.
,
Pecnik
,
R.
,
Marn
,
A.
, and
Gottlich
,
E.
, “
Numerical Investigation of the Effect of Tip Leakage Flow on an Aggressive S-Shaped Intermediate Turbine Duct
,”
ASME
Paper No. GT2009-59535.10.1115/GT2009-59535
6.
Couey
,
P. T.
,
Mckeever
,
C. W.
,
Malak
,
M. F.
,
Raju Veeraraghava
,
H.
, and
Dhinagaran
,
R.
,
2010
, “
Computational Study of Geometric Parameter Influence on Aggressive Inter-Turbine Duct Performance
,”
ASME
Paper No. GT2010-23604.10.1115/GT2010-23604
7.
Fox
,
R. W.
, and
Kline
,
S. J.
,
1962
, “
Flow Regimes in Curved Subsonic Diffusers
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
303
312
.10.1115/1.3657307
8.
Sagi
,
C. J.
, and
Johnston
,
J. P.
,
1967
, “
The Design and Performance of Two-Dimensional, Curved Diffusers: Part I—Exposition of Method and Part II—Experiment, Evaluation of Method, and Conclusions
,”
ASME J. Basic Eng.
,
89
(
4
), pp.
715
731
. 10.1115/1.3609693
9.
Kuchana
,
V.
,
Guntu
,
S.
,
Srinivasan
,
B.
,
Couey
,
P. T.
,
Mckeever
,
C. W.
, and
Malak
,
M. F.
, “
Numerical Study on Inter-Turbine Ducts With Variable Curvature Distribution
,”
AIAA
Paper No. 2013-3686.10.2514/6.2013-3686
10.
Yanfeng
,
Z.
,
Shuzhen
,
H.
,
Zhang
,
X.-F.
,
Benner
,
M.
, and
Vlasic
,
E.
,
2014
, “
Flow Control in an Aggressive Interturbine Transition Duct Using Low Profile Vortex Generators
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
112604
.10.1115/1.4027656
11.
Yildirim
,
S.
,
George
,
H.
,
Jamey
,
J.
, and
David
,
A.
,
2005
, “
Numerical Simulations of Plasma Based Flow Control Applications
,”
AIAA
Paper No. 2005-4633.10.2514/6.2005-4633
12.
Razvan
,
F.
,
Luca
,
B.
, and
Greg
,
T.
,
2007
, “
Flow-Control-Enabled Aggressive Turbine Transition Ducts and Engine System Analysis
,”
AIAA J. Propul. Power
,
23
(
4
), pp.
797
7xx
.10.2514/1.13488
13.
Kirtley
,
K. R.
, and
Graziosi
,
P.
,
2005
, “
Self-Aspirating High-Area-Ratio Inter-Turbine Duct Assembly for Use in a Gas Turbine Engine
,” United States Patent No. US6851264.
14.
Graziosi
,
P.
, and
Kirtley
,
K. R.
,
2014
, “
High-Area-Ratio Inter-Turbine Duct With Inlet Blowing
,” U.S. Patent No. US7137245B2.
15.
Widenhoefer
,
J. F.
,
Graziosi
,
P.
, and
Kirtley
,
K. R.
,
2009
, “
Multi-slot Inter-turbine Duct Assembly for use in a Turbine Engine
,” U.S. Patent No. US7549282B2.
16.
Ramachandran
,
D.
,
Guntu
,
S.
,
Kuchana
,
V.
,
Srinivasan
,
B.
,
Gupta
,
A.
,
Couey
,
P.
,
McKeever
,
C.
,
Malak
,
M. F.
, and
Muthiah
,
G. S.
,
2011
, “
Inter-Turbine Ducts With Guide Vanes
,” U.S. Patent No. US8845286B2.
17.
Kuchana
,
V.
,
Couey
,
P.
,
Srinivasan
,
B.
,
McKeever
,
C.
, and
Malak
,
M. F.
,
2017
, “
Inter-Turbine Ducts With Multiple Splitter Blades
,” U.S. Patent No. US20190003325A1.
18.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical or Annular Cross-Section
,”
Fluid Mechanics of Internal Flow
,
G.
Sovran
, ed.
Elsevier Publishing
,
New York
, pp.
270
319
.
19.
Yanfeng
,
Z.
,
Shuzhen
,
H.
,
Ali
,
M.
,
Xue-Feng
,
Z.
, and
Edward
,
V.
,
2018
, “
Effects of Area Ratio and Mean Rise Angle on the Aerodynamics of Interturbine Ducts
,”
ASME J. Turbomach.
,
140
(
9
), p.
091006
.10.1115/1.4039936
20.
Engineering ToolBox
,
2005
, “
Standard Day Air Properties
,” Engineering ToolBox, accessed Nov. 29, 2015, http://www.engineeringtoolbox.com/dry-air-properties-d_973.html
You do not currently have access to this content.