Abstract

Foreign object impact of ceramic matrix composite (CMC) materials and components in a gas turbine engine environment could be detrimental to engine performance and hence must be accounted for in the design of such components. This paper is concerned with experiments and computational modeling of foreign object impact phenomenon in silicon carbide (SiC)-based CMC. Controlled impact experiments were conducted on the CMC material using a gas-gun apparatus with spherical hardened steel projectile. The internal damage state within the CMC specimens was assessed using X-ray computed tomography scan technique. The computational modeling involved explicit dynamic finite element (FE) simulation of the impact process wherein either delamination mechanism is modeled or both ply damage and delamination mechanisms are modeled in a coupled manner. The delamination mechanism is modeled explicitly using cohesive-zone (CZ) fracture mechanics approach, whereas, the ply-damage mechanisms are modeled implicitly using simplified continuum damage mechanics approach. The simulation results were found to be in reasonable qualitative and quantitative agreement with the experimental results. Furthermore, it is shown that modeling both the ply damage and delamination mechanisms are essential to predict the correct delamination pattern even for intermediate velocity impacts that leads to predominantly delamination damage. The predictive nature of the modeling approach is demonstrated and approaches to enhance the models are also discussed.

References

1.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
,
2004
, “
Foreign Object Damage in Flexure Bars of Two Gas-Turbine Grade Silicon Nitrides
,”
Mater. Sci. Eng.
,
A379
, pp.
411
419
.10.1016/j.msea.2004.03.027
2.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
,
2004
, “
Foreign Object Damage in Disks of Gas-Turbine Grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature
,”
J. Mater. Sci.
,
39
(
20
), pp.
6173
6182
.10.1023/B:JMSC.0000043584.35335.58
3.
Choi
,
S. R.
,
Racz
,
Z.
,
Bhatt
,
R. T.
, and
Brewer
,
D. N.
,
2006
, “
Foreign Object Damage in a Gas-Turbine Grade Silicon Nitride by Spherical Projectiles of Various Materials
,” NASA Glenn Research Center, Cleveland, OH, Report No. NASA TM-2006-214330.
4.
Subhash
,
G.
,
Maiti
,
S.
,
Geubelle
,
P. H.
, and
Ghosh
,
D.
,
2008
, “
Recent Advances in Dynamic Indentation Fracture, Impact Damage and Fragmentation of Ceramics
,”
J. Am. Ceram. Soc.
,
91
(
9
), pp.
2777
2791
.10.1111/j.1551-2916.2008.02624.x
5.
Choi
,
S. R.
,
2015
, “
Foreign Object Impact Damage in Ceramic Matrix Composites
,”
Ceramic Matrix Composites: Materials, Modeling and Technology
,
N. P.
Bansal
, and
J.
Lamon
, ed.,
Wiley
, Hoboken, NJ.
6.
Choi
,
S. R.
,
2008
, “
Foreign Object Damage Phenomenon by Steel Ball Projectiles in a SiC/SiC Ceramic Matrix Composite at Ambient and Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
91
(
9
), pp.
2963
2968
.10.1111/j.1551-2916.2008.02498.x
7.
Choi
,
S. R.
,
Faucett
,
D. C.
, and
Alexander
,
D. J.
,
2014
, “
Foreign Object Damage by Spherical Steel Projectiles in a N720/Alumina Oxide/Oxide Ceramic Matrix Composite
,”
J. Am. Ceram. Soc.
,
97
(
12
), pp.
3926
3934
.10.1111/jace.13197
8.
Ogi
,
K.
,
Okabe
,
T.
,
Takahashi
,
M.
,
Yashiro
,
S.
,
Yoshimura
,
A.
, and
Ogasawara
,
T.
,
2010
, “
Experimental Characterization of High-Speed Impact Damage Behavior in a Three-Dimensionally Woven SiC/SiC Composite
,”
Compos.: Part A
,
41
(
4
), pp.
489
498
.10.1016/j.compositesa.2009.12.005
9.
Herb
,
V.
,
Martin
,
E.
, and
Couegnat
,
G.
,
2012
, “
Damage Analysis of Thin 3D-Woven SiC/SiC Composite Under Low Velocity Impact Loading
,”
Compos.: Part A
,
43
(
2
), pp.
247
253
.10.1016/j.compositesa.2011.10.013
10.
Morscher
,
G. N.
,
Baker
,
C.
,
Gyekenyesi
,
A.
,
Faucett
,
C.
, and
Choi
,
S.
,
2013
, “
Damage Detection and Tensile Performance of Various SiC/SiC Composites Impacted With High Speed Projectile
,”
ASME
Paper No. GT2013-95638. 10.1115/GT2013-95638
11.
Miller
,
I.
,
Nagpal
,
V.
, and
Madenci
,
E.
,
2011
, “
Foreign Object Impact Damage Prediction in Ceramic Matrix Composites
,” NAWC-PAX, Patuxent River, MD, NAVAIR Report #20110304337.
12.
Xue
,
Y.
,
Abdi
,
F.
,
Morscher
,
G. N.
, and
Choi
,
S.
,
2013
, “
Non-Destructive Ceramic Matrix Composite Impact Modeling Validation
,”
ASME
Paper No. GT2013-94728.10.1115/GT2013-94728
13.
Tan
,
W.
,
Falzon
,
B. G.
,
Chiu
,
L. N. S.
, and
Price
,
M.
,
2015
, “
Predicting Low Velocity Impact Damage and Compression-After-Impact (CAI) Behavior of Composite Laminates
,”
Compos.: Part A
,
71
, pp.
212
226
.10.1016/j.compositesa.2015.01.025
14.
Kumar
,
R. S.
, and
Welsh
,
G. S.
,
2012
, “
Delamination Failure in Ceramic Matrix Composites: Numerical Predictions and Experiments
,”
Acta Mater.
,
60
(
6–7
), pp.
2886
2900
.10.1016/j.actamat.2012.01.053
15.
Kumar
,
R. S.
,
2013
, “
Analysis of Coupled Ply Damage and Delamination Failure Processes in Ceramic Matrix Composites
,”
Acta Mater.
,
61
(
10
), pp.
3535
3548
.10.1016/j.actamat.2013.02.027
16.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
17.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
18.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack formation and crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concrete Res.
,
6
(
6
), pp.
773
782
.10.1016/0008-8846(76)90007-7
19.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. App. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
20.
Xu
,
A. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulation of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.10.1016/0022-5096(94)90003-5
21.
Kumar
,
R. S.
,
2017
, “
Crack-Growth Resistance Behavior of mode-I Delamination in Ceramic Matrix Composites
,”
Acta Mater.
,
131
, pp.
511
522
.10.1016/j.actamat.2017.04.012
22.
Fish
,
J.
,
2013
,
Practical Multiscaling
,
Wiley
,
Chichester, UK
.
23.
Curtin
,
W. A.
,
1991
, “
Theory of Mechanical Properties of Ceramic-Matrix Composites
,”
J. Am. Ceram. Soc.
,
74
(
11
), pp.
2837
2845
.10.1111/j.1151-2916.1991.tb06852.x
24.
Budiansky
,
B.
,
Hutchinson
,
J.
, and
Evans
,
A. G.
,
1986
, “
Matrix Fracture in Fiber-Reinforced Ceramics
,”
J. Mech. Phys. Solids
,
34
(
2
), pp.
167
189
.10.1016/0022-5096(86)90035-9
25.
Ladeveze
,
P.
,
Baranger
,
E.
,
Genet
,
M.
, and
Cluzel
,
C.
,
2015
, “
Damage and Lifetime Modeling for Structure Computations
,”
Ceramic Matrix Composites: Materials, Modeling and Technology
,
N. P.
Bansal
, and
J.
Lamon
, eds.,
Wiley
, Hoboken, NJ.
26.
Talreja
,
R.
,
1991
, “
Continuum Modelling of Damage in Ceramic Matrix Composites
,”
Mech. Mater.
,
12
(
2
), pp.
165
180
.10.1016/0167-6636(91)90061-4
27.
Genin
,
G.
, and
Hutchinson
,
J. W.
,
2005
, “
Composite Laminates in Plane Stress: Constitutive Modeling and Stress Redistribution Due to Matrix Cracking
,”
J. Am. Ceram. Soc.
,
80
(
5
), pp.
1245
1255
.10.1111/j.1151-2916.1997.tb02971.x
28.
Rajan
,
V. P.
, and
Zok
,
F. W.
,
2013
, “
Remediation of a Constitutive Model for Ceramic Matrix Composite Laminates
,”
Compos. Part A
,
52
, pp.
80
88
.10.1016/j.compositesa.2013.05.010
29.
Rajan
,
V. P.
,
Shaw
,
J. H.
,
Rossol
,
M. N.
, and
Zok
,
F. W.
,
2014
, “
An Elastic-Plastic Constitutive Model for Ceramic Composite Laminates
,”
Compos.: Part A
,
66
, pp.
44
57
.10.1016/j.compositesa.2014.06.013
30.
Fish
,
J.
,
Yuan
,
Z.
, and
Kumar
,
R.
,
2018
, “
Computational Certification Under Limited Experiments
,”
Int. J. Numer. Methods Eng.
,
114
(
2
), pp.
172
195
.10.1002/nme.5739
31.
Kumar
,
R. S.
,
Mordasky
,
M.
,
Ojard
,
G.
,
Yuan
,
Z.
, and
Fish
,
J.
,
2018
, “
Notch-Strength Prediction of Ceramic Matrix Composites Using Multi-Scale Continuum Damage Model
,”
Materialia
, 6, p.
100267
.10.1016/j.mtla.2019.100267
32.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
329
334
.10.1115/1.3153664
33.
Lapczyk
,
I.
, and
Hurtado
,
J. A.
,
2007
, “
Progressive Damage Modeling in Fiber-Reinforced Materials
,”
Compos. Part A
,
38
(
11
), pp.
2333
2341
.10.1016/j.compositesa.2007.01.017
34.
Hu
,
G.
,
Liu
,
J.
,
Graham-Brady
,
L.
, and
Ramesh
,
K. T.
,
2015
, “
A 3D Mechanistic Model for Brittle Materials Containing Evolving Flaw Distribution Under Dynamic Multiaxial Loading
,”
J. Mech. Phys. Solids
,
78
, pp.
269
297
.10.1016/j.jmps.2015.02.014
You do not currently have access to this content.