Abstract

In this work, reduced order models (ROM) that are independent from the full order finite element models (FOM) considering geometrical nonlinearities are developed and applied to the dynamic study of a fan. The structure is considered to present nonlinear vibrations around the prestressed equilibrium induced by rotation enhancing the classical linearized approach. The reduced nonlinear forces are represented by a polynomial expansion obtained by the stiffness evaluation procedure (STEP) and then corrected by means of a proper orthogonal decomposition (POD) that filters the full order nonlinear forces (StepC ROM). The linear normal modes (LNM) and Craig-Bampton (C-B) type reduced basis are considered here. The latter are parameterized with respect to the rotating velocity. The periodic solutions obtained with the StepC ROM are in good agreement with the solutions of the FOM and are more accurate than the linearized ROM solutions and the STEP ROM. The proposed StepC ROM provides the best compromise between accuracy and time consumption of the ROM.

References

1.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2009
, “
Discrete Empirical Interpolation for Nonlinear Model Reduction
,”
48th IEEE Conference on Decision and Control, Held Jointly With the 28th Chinese Control Conference (CDC/CCC),
pp.
4316
4321
.
2.
Ryckelynck
,
D.
,
2005
, “
A Priori Hyperreduction Method: An Adaptive Approach
,”
J. Comput. Phys.
,
202
(
1
), pp.
346
366
.10.1016/j.jcp.2004.07.015
3.
Farhat
,
C.
,
Chapman
,
T.
, and
Avery
,
P.
,
2015
, “
Structure-Preserving, Stability, and Accuracy Properties of the Energy-Conserving Sampling and Weighting Method for the Hyper Reduction of Nonlinear Finite Element Dynamic Models
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1077
1110
.10.1002/nme.4820
4.
Bond
,
B. N.
, and
Daniel
,
L.
,
2007
, “
A Piecewise-Linear Moment-Matching Approach to Parameterized Model-Order Reduction for Highly Nonlinear Systems
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
26
(
12
), pp.
2116
2129
.10.1109/TCAD.2007.907258
5.
Rizzi
,
S. A.
, and
Muravyov
,
A. A.
,
2001
, “
Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation
,” Report No. NASA/TM-2001-210838, L-18068, NAS 1.15:210838.
6.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.10.1016/j.jsv.2012.10.017
7.
Capiez-Lernout
,
E.
,
Soize
,
C.
,
Akkaoui
,
Q.
, and
Ohayon
,
R.
,
2017
, “
Uncertainty Propagation in a Nonlinear Reduced-Order Model in Internal Elasto-Acoustics
,” Congrès Français de Mécanique (CFM 2017), Lille, France, Aug. 2017,
Elsevier
, pp.
1204
1209
.
8.
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mbaye
,
M.
,
2014
, “
Geometric Nonlinear Dynamic Analysis of Uncertain Structures With Cyclic Symmetry-Application to a Mistuned Industrial Bladed Disk
,”
International Conference on Uncertainty in Structural Dynamics
(
USD
), Leuven, Belgium, Sept. 2014, pp.
1
14
.https://pdfs.semanticscholar.org/c955/3a8ae0655b9ddb27c15e990ed9c95afb65c3.pdf?_ga=2.68678169.907411057.1569220029-2063705710.1568370276
9.
Kim
,
E.
, and
Cho
,
M.
,
2017
, “
Equivalent Model Construction for a Non-Linear Dynamic System Based on an Element-Wise Stiffness Evaluation Procedure and Reduced Analysis of the Equivalent System
,”
Comput. Mech.
,
60
(
5
), pp.
709
724
.10.1007/s00466-017-1435-y
10.
Thomas
,
O.
,
Sénéchal
,
A.
, and
Deü
,
J.-F.
,
2016
, “
Hardening/Softening Behavior and Reduced Order Modeling of Nonlinear Vibrations of Rotating Cantilever Beams
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1293
1318
.10.1007/s11071-016-2965-0
11.
Beley
,
J.-D.
,
Shen
,
Z.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2017
, “
Vibration Non-Linéaire de Poutre en Grande Transformation
,”
Conference on Computer Science and Mechanical Automation
(
CSMA
), Giens, France, May 2017.
12.
Huang
,
H.
, and
Han
,
Q.
,
2010
, “
Research on Nonlinear Postbuckling of Functionally Graded Cylindrical Shells Under Radial Loads
,”
Compos. Struct.
,
92
(
6
), pp.
1352
1357
.10.1016/j.compstruct.2009.11.016
13.
Zhang
,
J.
,
Guo
,
L.
,
Wu
,
H.
,
Zhou
,
A.
,
Hu
,
D.
, and
Ren
,
J.
,
2014
, “
The Influence of Wind Shear on Vibration of Geometrically Nonlinear Wind Turbine Blade Under Fluid–Structure Interaction
,”
Ocean Eng.
,
84
, pp.
14
19
.10.1016/j.oceaneng.2014.03.017
14.
Sternchüss
,
A.
,
2009
, “
Multi-Level Parametric Reduced Models of Rotating Bladed Disk Assemblies
,” Ph.D. thesis, Ecole Centrale Paris, Paris, France.
15.
Genta
,
G.
, and
Silvagni
,
M.
,
2014
, “
On Centrifugal Softening in Finite Element Method Rotordynamics
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011001
.10.1115/1.4024073
16.
Craig
,
R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
17.
Farhat
,
C.
, and
Geradin
,
M.
,
1994
, “
On a Component Mode Synthesis Method and Its Application to Incompatible Substructures
,”
Comput. Struct.
,
51
(
5
), pp.
459
473
.10.1016/0045-7949(94)90053-1
18.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
.10.1115/1.3625199
19.
Brake
,
M. R.
,
Groß
,
J.
,
Lacayo
,
R. M.
,
Salles
,
L.
,
Schwingshackl
,
C. W.
,
Reuß
,
P.
, and
Armand
,
J.
,
2018
, “
Reduced Order Modeling of Nonlinear Structures With Frictional Interfaces
,”
The Mechanics of Jointed Structures
,
Springer
, Berlin, pp.
427
450
.
20.
Petrov
,
E.
, and
Ewins
,
D.
,
2002
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Discs
,”
ASME
J. Turbomachinery, 125(2), pp.
899
908
.
21.
Petrov
,
E.
,
Di Mare
,
L.
,
Hennings
,
H.
, and
Elliott
,
R.
,
2010
, “
Forced Response of Mistuned Bladed Disks in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
052504
.10.1115/1.3205031
22.
Henry
,
R.
,
1981
, “
Contribution à L'étude Dynamique Des Machines Tournantes
,” Ph.D. thesis, INSA Lyon, Lyon, France.
23.
Lülf
,
F. A.
,
Tran
,
D.-M.
,
Matthies
,
H. G.
, and
Ohayon
,
R.
,
2015
, “
An Integrated Method for the Transient Solution of Reduced Order Models of Geometrically Nonlinear Structures
,”
Comput. Mech.
,
55
(
2
), pp.
327
344
.10.1007/s00466-014-1103-4
24.
Balmaseda
,
M.
,
Jacquet-Richardet
,
G.
,
Placzek
,
A.
, and
Tran
,
D.-M.
,
2018
, “
Reduced Order Models for Dynamic Analysis of Nonlinear Rotating Structures
,”
Proceedings of Sixth European Conference on Computational Mechanics/Seventh European Conference on Computational Fluid Dynamics
, Glasgow, UK, June 2018.
25.
Heegaard
,
J.-H.
, and
Curnier
,
A.
,
1993
, “
An Augmented Lagrangian Method for Discrete Large-Slip Contact Problems
,”
Int. J. Numer. Methods Eng.
,
36
(
4
), pp.
569
593
.10.1002/nme.1620360403
26.
Chabrand
,
P.
,
Dubois
,
F.
, and
Raous
,
M.
,
1998
, “
Various Numerical Methods for Solving Unilateral Contact Problems With Friction
,”
Math. Comput. Modell.
,
28
(
4–8
), pp.
97
108
.10.1016/S0895-7177(98)00111-3
27.
Sofonea
,
M.
, and
Matei
,
A.
,
2012
,
Mathematical Models in Contact Mechanics
, Vol.
398
,
Cambridge University Press
,
Cambridge, UK
.
28.
Hong
,
S.-K.
,
Epureanu
,
B. I.
,
Castanier
,
M. P.
, and
Gorsich
,
D. J.
,
2011
, “
Parametric Reduced-Order Models for Predicting the Vibration Response of Complex Structures With Component Damage and Uncertainties
,”
J. Sound Vib.
,
330
(
6
), pp.
1091
1110
.10.1016/j.jsv.2010.09.022
29.
Kurstak
,
E.
,
Wilber
,
R.
, and
D'Souza
,
K.
,
2018
, “
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
,”
ASME
Paper No. GT2018-75563.10.1115/GT2018-75563
30.
Grolet
,
A.
, and
Thouverez
,
F.
,
2010
, “
Vibration Analysis of a Nonlinear System With Cyclic Symmetry
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
022502
.10.1115/1.4001989
31.
Hansen
,
P.
,
1990
, “
Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems With Ill-Determined Numerical Rank
,”
SIAM J. Sci. Stat. Comput.
,
11
(
3
), pp.
503
518
.10.1137/0911028
32.
Wiart
,
L.
,
Atinault
,
O.
,
Boniface
,
J.-C.
, and
Barrier
,
R.
,
2016
, “
Aeropropulsive Performance Analysis of the NOVA Configurations
,”
30th Congress of the International Council of the Aeronautical Sciences
, Daejeon, Korea, Sept. 2016, pp.
1
11
.
33.
Wiart
,
L.
,
Atinault
,
O.
,
Grenon
,
R.
,
Paluch
,
B.
, and
Hue
,
D.
,
2015
, “
Development of Nova Aircraft Configurations for Large Engine Integration Studies
,”
AIAA
Paper No. AIAA
2015
2254
.10.2514/6.2015-2254
34.
Cardarelli
,
F.
,
2000
,
Materials Handbook
,
Springer
, Berlin.
You do not currently have access to this content.