Abstract

This paper presents experimental and computational results using a 1.5-stage test rig designed to investigate the effects of ingress through a double radial overlap rim-seal. The effect of the vanes and blades on ingress was investigated by a series of carefully controlled experiments: first, the position of the vane relative to the rim seal was varied; second, the effect of the rotor blades was isolated using a disk with and without blades. Measurements of steady pressure in the annulus show a strong influence of the vane position. The relationship between sealing effectiveness and purge flowrate exhibited a pronounced inflection for intermediate levels of purge; the inflection did not occur for experiments with a bladeless rotor. Shifting the vane closer to the rim-seal, and therefore the blade, caused a local increase in ingress in the inflection region; again, this effect was not observed for the bladeless experiments. Unsteady pressure measurements at the periphery of the wheel-space revealed the existence of large-scale pressure structures (or instabilities) which depended weakly on the vane position and sealing flowrate. These were measured with and without the blades on the rotor disk. In all cases, these structures rotated close to the disk speed.

References

References
1.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
2.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2018
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng., Part C
, epub.10.1177/0954406218784612
3.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.10.1115/1.2928368
4.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
ASME
Paper No. 94-GT-126.10.1115/94-GT-126
5.
Hills
,
N. J.
,
Green
,
T.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1997
, “
Aerodynamics of Turbine Rim-Seal Ingestion
,”
ASME
Paper No. 97-GT-268.10.1115/97-GT-268
6.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.10.1115/1.1456461
7.
Bohn
,
D. E.
,
Johann
,
E.
, and
Kruger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
ASME
Paper No. 95-GT-143.10.1115/95-GT-143
8.
Bohn
,
D. E.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 99-GT-248.10.1115/99-GT-248
9.
Bohn
,
D. E.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 2000-GT-0284.10.1115/2000-GT-0284
10.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2003-38459.10.1115/GT2003-38459
11.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.10.1115/GT2004-53829
12.
Wang
,
C. Z.
,
Johnson
,
B. V.
,
De Jong
,
F.
,
Vashist
,
T. K.
, and
Dutta
,
R.
,
2008
, “
Comparison of Flow Characteristics in Axial-Gap Seals for Close- and Wide-Spaced Turbine Stages
,”
ASME
Paper No. GT2007-27909.10.1115/GT2007-27909
13.
Rabs
,
M.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No. GT2009-59965.10.1115/GT2009-59965
14.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J. W.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
15.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.10.1115/1.4037027
16.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2017
, “
Measurements and Modelling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012603
.10.1115/1.4034240
17.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2018
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.10.1115/1.4041115
18.
Schadler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2017
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
139
(
1
), p.
011011
.10.1115/1.4034416
19.
Owen
,
J. M.
,
Wu
,
K.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Cho
,
G.
, and
Lock
,
G. D.
,
2014
, “
Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032510
.10.1115/1.4028395
20.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part 2: Externally-Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.10.1115/1.4001178
21.
Boudet
,
J.
,
Autef
,
V.
,
Chew
,
J.
,
Hills
,
N.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
, pp.
373
383
.10.1017/S000192400070042X
22.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.10.1115/1.1556411
23.
Clark
,
K.
,
Barringer
,
M.
, and
Thole
,
K.
,
2016
, “
Using a Tracer Gas to Quantify Sealing Effectiveness for Engine Realistic Rim Seals
,”
ASME
Paper No. GT2016-58095.10.1115/GT2016-58095
24.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part 1: Rotationally-Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
25.
Savov
,
S. S.
, and
Atkins
,
N. R.
,
2017
, “
A Rim Seal Ingress Model Based on Turbulent Transport
,”
ASME
Paper No. GT2017-63531.10.1115/GT2017-63531
26.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2001
,
Gas Turbine Theory
, 5th ed., Prentice Hall, Upper Saddle River, NJ.
You do not currently have access to this content.