Abstract

The ingress of hot annulus gas into stator–rotor cavities is an important topic to engine designers. Rim-seals reduce the pressurized purge required to protect highly stressed components. This paper describes an experimental and computational study of flow through a turbine chute seal. The computations—which include a 360 deg domain—were undertaken using dlrtrace's time-marching solver. The experiments used a low Reynolds number turbine rig operating with an engine-representative flow structure. The simulations provide an excellent prediction of cavity pressure and swirl, and good overall agreement of sealing effectiveness when compared to experiment. Computation of flow within the chute seal showed strong shear gradients which influence the pressure distribution and secondary-flow field near the blade leading edge. High levels of shear across the rim-seal promote the formation of large-scale structures at the wheel-space periphery; the number and speed of which were measured experimentally and captured, qualitatively and quantitatively, by computations. A comparison of computational domains ranging from 30 deg to 360 deg indicates that steady features of the flow are largely unaffected by sector size. However, differences in large-scale flow structures were pronounced with a 60 deg sector and suggest that modeling an even number of blades in small sector simulations should be avoided.

References

References
1.
Horwood
,
J.
,
Hualca
,
F.
,
Scobie
,
J.
,
Wilson
,
M.
,
Sangan
,
C.
, and
Lock
,
G.
,
2018
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.10.1115/1.4041115
2.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.10.1115/1.1772408
3.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
4.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Measurements and Modeling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012603
.10.1115/1.4034240
5.
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2018
, “
Experimental Investigation of Turbine Stage Flow Field and Performance at Varying Cavity Purge Rates and Operating Speeds
,”
ASME J. Turbomach.
,
140
(
3
), p.
031001
.10.1115/1.4038468
6.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
7.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.10.1115/1.4037027
8.
Mirzamoghadam
,
A. V.
,
Kanjiyani
,
S.
,
Riahi
,
A.
,
Vishnumolakala
,
R.
, and
Gundeti
,
L.
,
2014
, “
Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disk Cavity Interaction
,”
ASME J. Turbomach.
,
137
(
1
), p.
011008
.10.1115/1.4028248
9.
Scobie
,
J. A.
,
Teuber
,
R.
,
Li
,
Y. S.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2016
, “
Design of an Improved Turbine Rim-Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022503
.10.1115/1.4031241
10.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
ASME
Paper No. GT2006-90307.10.1115/GT2006-90307
11.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
J. Mech. Eng. Sci.
,
225
(
12
), pp.
2881
2891
.10.1177/0954406211409285
12.
O'Mahoney
,
T.
,
Hills
,
N.
, and
Chew
,
J.
,
2012
, “
Sensitivity of LES Results From Turbine Rim Seals to Changes in Grid Resolution and Sector Size
,”
Prog. Aerosp. Sci.
,
52
, pp.
48
55
.10.1016/j.paerosci.2011.09.003
13.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-Blais
,
G.
,
Lapointe
,
S.
,
Caron
,
J.-F.
, and
Marini
,
R.
,
2010
, “
Simulations of Flow Ingestion and Related Structures in a Turbine Disk Cavity
,”
ASME
Paper No. GT2010-22729.10.1115/GT2010-22729
14.
Boutet-Blais
,
G.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Julien
,
S.
,
Harvey
,
J.-F.
,
Marini
,
R.
, and
Caron
,
J.-F.
,
2011
, “
Passive Tracer Validity for Cooling Effectiveness Through Flow Computation in a Turbine Rim Seal Environment
,”
ASME
Paper No. GT2011-45654.10.1115/GT2011-45654
15.
Feiereisen
,
J.
,
Paolillo
,
R.
, and
Wagner
,
J.
,
2000
, “
UTRC Turbine Rim Seal Ingestion and Platform Cooling Experiments
,”
AIAA
Paper No. 2000-3371.10.2514/6.2000-3371
16.
Gao
,
F.
,
Poujol
,
N.
,
Chew
,
J. W.
, and
Beard
,
P. F.
,
2018
, “
Advanced Numerical Simulation of Turbine Rim Seal Flows and Consideration for RANS Turbulence Modelling
,”
ASME
Paper No. GT2018-75116.10.1115/GT2018-75116
17.
Ko
,
S. H.
, and
Rhode
,
D. L.
,
1992
, “
Thermal Details in a Rotor–Stator Cavity at Engine Conditions With a Mainstream
,”
ASME J. Turbomach.
,
114
(
2
), pp.
446
453
.10.1115/1.2929164
18.
Savov
,
S. S.
, and
Atkins
,
N. R.
,
2017
, “
A Rim Seal Ingress Model Based on Turbulent Transport
,”
ASME
Paper No. GT2017-63531.10.1115/GT2017-63531
19.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.10.1115/1.4023016
20.
Green
,
B. R.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2014
, “
Time-Averaged and Time-Accurate Aerodynamic Effects of Forward Rotor Cavity Purge Flow for a High-Pressure Turbine—Part I: Analytical and Experimental Comparisons
,”
ASME J. Turbomach.
,
136
(
1
), p.
011004
.10.1115/1.4024774
21.
Green
,
B. R.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2014
, “
Time-Averaged and Time-Accurate Aerodynamic Effects of Rotor Purge Flow for a Modern, One and One-Half Stage High-Pressure Turbine—Part II: Analytical Flow Field Analysis
,”
ASME J. Turbomach.
,
136
(
1
), p.
011009
.10.1115/1.4024776
22.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2017
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor-Stator Cavity
,”
ASME
Paper No. GT2017-63910.10.1115/GT2017-63910
23.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2018
, “
Scaling Sealing Effectiveness in a Stator-Rotor Cavity for Differing Blade Spans
,”
ASME
Paper No. GT2018-77105.10.1115/GT2018-77105
24.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
, and
Paolillo
,
R. E.
,
2005
, “
Experiment on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
573
582
.10.1115/1.1850499
25.
Teuber
,
R.
,
Li
,
Y. S.
,
Maltson
,
J.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
2
), pp.
167
178
.10.1177/0957650912466657
26.
Schadler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2017
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
139
(
1
), p.
011011
.10.1115/1.4034416
27.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.10.1115/GT2004-53829
28.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2018
, “
Large-Eddy Simulation of the Unsteady Full 3D Rim Seal Flow in a One-Stage Axial-Flow Turbine
,”
Flow, Turbul. Combust.
, 102(1), pp.
189
220
.10.1007/s10494-018-9956-9
29.
Wang
,
C.-Z.
,
Mathiyalagan
,
S.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2014
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.10.1115/1.4024684
30.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C. Z.
, and
Glahn
,
J. A.
,
2010
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.10.1115/1.4002423
31.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems
(Rotor Stator Systems), Vol.
1
,
Research Studies Press Ltd
,
Taunton, UK
.
32.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Sangan
,
C. M.
,
Scobie
,
J. A.
, and
Lock
,
G. D.
,
2016
, “
Numerical Characterization of Hot-Gas Ingestion Through Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032602
.10.1115/1.4034540
33.
Rabs
,
M.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No. GT2009-59965.10.1115/GT2009-59965
34.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.10.1115/1.1556411
35.
Boudet
,
J.
,
Autef
,
V.
,
Chew
,
J.
,
Hills
,
N.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
(
1098
), pp.
373
383
.
36.
Hualca
,
F.
,
Horwood
,
J.
,
Scobie
,
J.
,
Sangan
,
C.
, and
Lock
,
G.
,
2019
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME
Paper No. GT2019-90987.10.1115/GT2019-90987
37.
Gao
,
F.
,
Chew
,
J.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2017
, “
Numerical Studies of Turbine Rim Sealing Flows on a Chute Seal Configuration
,”
Proceedings of 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Stockholm, Sweden, Apr. 3–7, Paper No.
ETC2017-284
.http://epubs.surrey.ac.uk/813729/1/ETC_Template_v3.pdf
38.
Town
,
J.
,
Averbach
,
M.
, and
Camci
,
C.
,
2016
, “
Experimental and Numerical Investigation of Unsteady Structures Within the Rim Seal Cavity in the Presence of Purge Mass Flow
,”
ASME
Paper No. GT2016-56500.10.1115/GT2016-56500
You do not currently have access to this content.