Abstract

Sensor fault detection and classification is a key challenge for machine monitoring and diagnostics, since raw data cleaning represents a key process in the gas turbine industry. To this end, this paper presents a comprehensive approach for detection, classification, and integrated diagnostics of gas turbine sensors (named DCIDS), which was previously developed by the authors and has been substantially improved and validated by means of field data. For a single sensor or redundant/correlated sensors, the improved diagnostic tool, called improved-DCIDS (I-DCIDS), can identify seven classes of faults, i.e., out of range, stuck signal, dithering, standard deviation, trend coherence, spike, and bias. First, this paper details the I-DCIDS methodology for sensor fault detection and classification. The methodology uses basic mathematical laws that require some user-defined configuration parameters, i.e., acceptability thresholds and windows of observation. Second, a sensitivity analysis is carried out on I-DCIDS parameters to derive some rules of thumb about their optimal setting. The sensitivity analysis is performed on four heterogeneous and challenging datasets with redundant sensors acquired from Siemens gas turbines (GTs). The results demonstrate the diagnostic capability of the I-DCIDS approach in a real-world scenario. Moreover, the methodology proves to be suitable for all types of datasets and physical quantities and, thanks to its optimal tuning, can also identify the exact time point of fault onset.

References

1.
Lo
,
C.
,
Lynch
,
J. P.
, and
Liu
,
M.
,
2016
, “
Distributed Model-Based Nonlinear Sensor Fault Diagnosis in Wireless Sensor Networks
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
470
484
.10.1016/j.ymssp.2015.05.011
2.
Brooks
,
K. S.
, and
Bauer
,
M.
,
2018
, “
Sensor Validation and Reconstruction: Experiences With Commercial Technology
,”
Control Eng. Pract.
,
77
, pp.
28
40
.10.1016/j.conengprac.2018.04.003
3.
Yi
,
T. H.
,
Huang
,
H. B.
, and
Li
,
H. N.
,
2017
, “
Development of Sensor Validation Methodologies for Structural Health Monitoring: A Comprehensive Review
,”
Measurement
,
109
, pp.
200
214
.10.1016/j.measurement.2017.05.064
4.
Kullaa
,
J.
,
2013
, “
Detection, Identification, and Quantification of Sensor Fault in a Sensor Network
,”
Mech. Syst. Signal Process.
,
40
(
1
), pp.
208
221
.10.1016/j.ymssp.2013.05.007
5.
Navi
,
M.
,
Meskin
,
N.
, and
Davoodi
,
M.
,
2018
, “
Sensor Fault Detection and Isolation of an Industrial Gas Turbine Using Partial Adaptive KPCA
,”
J. Process Control
,
64
, pp.
37
48
.10.1016/j.jprocont.2018.02.002
6.
Pourbabaee
,
B.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2016
, “
Robust Sensor Fault Detection and Isolation of Gas Turbine Engines Subjected to Time-Varying Parameter Uncertainties
,”
Mech. Syst. Signal Process.
,
76–77
, pp.
136
156
.10.1016/j.ymssp.2016.02.023
7.
Rahme
,
S.
, and
Meskin
,
N.
,
2015
, “
Adaptive Sliding Mode Observer for Sensor Fault Diagnosis of an Industrial Gas Turbine
,”
Control Eng. Pract.
,
38
, pp.
57
74
.10.1016/j.conengprac.2015.01.006
8.
Naderi
,
E.
, and
Khorasani
,
K.
,
2018
, “
Data-Driven Fault Detection, Isolation and Estimation of Aircraft Gas Turbine Engine Actuator and Sensors
,”
Mech. Syst. Signal Process.
,
100
, pp.
415
438
.10.1016/j.ymssp.2017.07.021
9.
Yang
,
Z.
,
Ling
,
B. W. K.
, and
Bingham
,
C.
,
2013
, “
Fault Detection and Signal Reconstruction for Increasing Operational Availability of Industrial Gas Turbines
,”
Measurement
,
46
(
6
), pp.
1938
1946
.10.1016/j.measurement.2013.02.016
10.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Cechini
,
G. F.
, and
Bechini
,
G.
,
2019
, “
Anomaly Detection in Gas Turbine Time Series by Means of Bayesian Hierarchical Models
,”
ASME
Paper No. GT2019-90057.10.1115/GT2019-90057
11.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Abdul Karim
,
Z. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.10.1016/j.apenergy.2017.04.048
12.
Li
,
Y. G.
,
2010
, “
Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041701
.10.1115/1.3159378
13.
Ying
,
Y.
,
Cao
,
Y.
,
Li
,
S.
,
Li
,
J.
, and
Guo
,
J.
,
2016
, “
Study on Gas Turbine Engine Fault Diagnostic Approach With a Hybrid of Gray Relation Theory and Gas-Path Analysis
,”
Adv. Mech. Eng.
,
8
(
1
), 1–14.10.1177/1687814015627769
14.
Tayarani-Bathaie
,
S. S.
, and
Khorasani
,
K.
,
2015
, “
Fault Detection and Isolation of Gas Turbine Engines Using a Bank of Neural Networks
,”
J. Process Control
,
36
, pp.
22
41
.10.1016/j.jprocont.2015.08.007
15.
Zhang
,
Y.
,
Bingham
,
C.
,
Yang
,
Z.
,
Ling
,
B. W. K.
, and
Gallimore
,
M.
,
2014
, “
Machine Fault Detection by Signal Denoising-With Application to Industrial Gas Turbines
,”
Measurement
,
58
, pp.
230
240
.10.1016/j.measurement.2014.08.020
16.
Prasad
,
A.
,
Edward
,
J. B.
, and
Ravi
,
K.
,
2018
, “
A Review on Fault Classification Methodologies in Power Transmission Systems: Part-I
,”
J. Electr. Syst. Inf. Technol.
,
5
(
1
), pp.
48
60
.10.1016/j.jesit.2017.01.004
17.
Hanachi
,
H.
,
Liu
,
J.
, and
Mechefske
,
C.
,
2018
, “
Multi-Mode Diagnosis of a Gas Turbine Engine Using an Adaptive Neuro-Fuzzy System
,”
Chin. J. Aeronaut.
,
31
(
1
), pp.
1
9
.10.1016/j.cja.2017.11.017
18.
Hanachi
,
H.
,
Liu
,
J.
,
Kim
,
I. Y.
, and
Mechefske
,
C. K.
,
2019
, “
Hybrid Sequential Fault Estimation for Multi-Mode Diagnosis of Gas Turbine Engines
,”
Mech. Syst. Signal Process.
,
115
, pp.
255
268
.10.1016/j.ymssp.2018.05.054
19.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2018
, “
Optimization of Statistical Methodologies for Anomaly Detection in Gas Turbine Dynamic Time Series
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032401
.10.1115/1.4037963
20.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2018
, “
Resistant Statistical Methodologies for Anomaly Detection in Gas Turbine Dynamic Time Series: Development and Field Validation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052401
.10.1115/1.4038155
21.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2018
, “
A Comprehensive Approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (DCIDS)
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032402
.10.1115/1.4037964
22.
Ceschini
,
G. G.
,
Manservigi
,
L.
,
Bechini
,
G.
, and
Venturini
,
M.
,
2018
, “
Detection and Classification of Sensor Anomalies in Gas Turbine Field Data
,”
ASME
Paper No. GT2018-75007.10.1115/GT2018-75007
23.
Bakdi
,
A.
,
Kouadri
,
A.
, and
Bensmail
,
A.
,
2017
, “
Fault Detection and Diagnosis in a Cement Rotary Kiln Using PCA With EWMA-Based Adaptive Threshold Monitoring Scheme
,”
Control Eng. Pract.
,
66
, pp.
64
75
.10.1016/j.conengprac.2017.06.003
24.
Chandola
,
V.
,
Banerejee
,
A.
, and
Kumar
,
V.
,
2009
, “
Anomaly Detection: A Survey
,”
ACM Comput. Surv.
, 41(3), Article 15, 58 pages.10.1145/1541880.1541882
25.
Hyder
,
A. K.
,
Shahbazian
,
E.
, and
Waltz
,
E.
, “
Multisensor Fusion
,”
NATO Science Series, II: Mathematics, Physics and Chemistry
, Vol.
70
, Springer, The Netherlands.10.1007/978-94-010-0556-2
26.
Manservigi
,
L.
,
Venturini
,
M.
,
Ceschini
,
G. F.
,
Bechini
,
G.
, and
Losi
,
E.
,
2019
, “
A General Diagnostic Methodology for Sensor Fault Detection, Classification and Overall Health State Assessment
,”
ASME
Paper No. GT2019-90055.10.1115/GT2019-90055
27.
Muhammed
,
T.
, and
Shaikh
,
R. A.
,
2017
, “
An Analysis of Fault Detection Strategies in Wireless Sensor Networks
,”
J. Network Comput. Appl.
,
78
, pp.
267
287
.10.1016/j.jnca.2016.10.019
28.
Zhong
,
G. X.
, and
Yang
,
G. H.
,
2015
, “
Fault Detection for Discrete-Time Switched Systems With Sensor Stuck Faults and Servo Inputs
,”
ISA Trans.
,
58
, pp.
196
205
.10.1016/j.isatra.2015.05.006
29.
Cejnek
,
M.
, and
Bukovsky
,
I.
,
2018
, “
Concept Drift Robust Adaptive Novelty Detection for Data Streams
,”
Neurocomputing
,
309
, pp.
46
53
.10.1016/j.neucom.2018.04.069
30.
Jombo
,
G.
,
Zhang
,
Y.
, and
Griffiths
,
J. D.
,
2018
, “
Automated Gas Turbine Sensor Fault Diagnostics
,”
ASME
Paper No. GT2018-75229.10.1115/GT2018-75229
31.
Pytharouli
,
S.
,
Chaikalis
,
S.
, and
Stiros
,
S. C.
,
2018
, “
Uncertainty and Bias in Electronic Tide-Gauge Records: Evidence From Collocated Sensors
,”
Measurement
,
125
, pp.
496
508
.10.1016/j.measurement.2018.05.012
32.
Gatta
,
N.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
, and
Bechini
,
G.
,
2018
, “
Capability of the Bayesian Forecasting Method to Predict Field Timeseries
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121013
.10.1115/1.4040736
You do not currently have access to this content.