Abstract

Typical turbomachinery aerothermal problems of practical interest are characterized by flow structures of wide-ranging scales, which interact with each other. Such multiscale interactions can be observed between the flow structures produced by surface roughness and by the bulk flow patterns. Moreover, additive manufacturing (AM) may sooner or later open a new chapter in the way components are designed by granting designers the ability to control the shape and patterns of surface roughness. As a result, surface finish, which so far has been treated largely as a stochastic trait, can be shifted to a set of design parameters that consist of repetitive, discrete micro-elements on a wall surface (“manufacturable roughness”). Considering this prospective capability, the question would arise regarding how surface microstructures can be incorporated in computational analyses during designing in the future. Semi-empirical methods for predicting aerothermal characteristics and the impact of manufacturable roughness could be used to minimize computational cost. However, the lack of element-to-element resolution may lead to erroneous predictions, as the interactions among the roughness micro-elements have been shown to be significant for adequate performance predictions (Kapsis and He, 2018, “Analysis of Aerothermal Characteristics of Surface Micro-Structures,” ASME J. Fluids Eng., 140(5), p. 051104). In this paper, a new multiscale approach based on the novel block spectral method (BSM) is adopted. This method aims to provide efficient resolution of the detailed local flow variation in space and time of the large-scale microstructures. This resolution is provided without resorting to modeling every single ones in detail, as a conventional large-scale computational fluid dynamics (CFD) simulation would demand, but still demonstrating similar time-accurate and time-averaged flow properties. The main emphasis of this work is to develop a parallelized solver of the method to enable tackling large problems. The work also includes a first of the kind verification and demonstration of the method for wall surfaces with a large number of microstructured elements.

References

References
1.
Siebert
,
M.
,
2017
, “
Breakthrough With 3D Printed Gas Turbine Blades
,” accessed Nov. 24, 2019, https://press.siemens.com/global/en/pressrelease/ siemens-achieves-breakthrough-3d-printed-gas-turbine-blades
2.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
3.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2011
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade: Part 1
,”
ASME J. Turbomach.
,
134
(
4
), p.
041006
.10.1115/1.4003234
4.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part II: Aerodynamic Losses,
ASME J. Turbomach
.,
134
(4), p.
041007
.10.1115/1.4003656
5.
Roberts
,
S. K.
, and
Yaras
,
M. L.
,
2006
, “
Effects of Surface-Roughness Geometry on Separation-Bubble Transition
,”
ASME J. Turbomach.
,
128
(
2
), pp.
349
356
.10.1115/1.2101852
6.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
,
127
(
1
), pp.
200
208
.10.1115/1.1811101
7.
Waigh
,
D. R.
, and
Kind
,
R. J.
,
1998
, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
,
36
(
6
), pp.
1117
1119
.10.2514/2.491
8.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Mardsen
,
R.
,
2016
, “
The Limitations of Using Ra to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003
.10.1115/1.4032280
9.
Bons
,
J. P.
,
2002
, “
ST and CF Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.10.1115/1.1505851
10.
Bons
,
J. P.
, and
McClain
,
S.
,
2004
, “
The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer
,”
ASME J. Turbomach.
,
126
(
3
), pp.
385
394
.10.1115/1.1738120
11.
Bons
,
J. P.
,
McClain
,
S.
,
Wang
,
Z. J.
,
Chi
,
X.
, and
Shih
,
T. I.
,
2008
, “
A Comparison of Approximate Versus Exact Geometrical Representations of Roughness for CFD Calculations of CF and ST
,”
ASME J. Turbomach.
,
130
(
2
), p.
021024
.10.1115/1.2752190
12.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
,“
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.10.1115/1.2098791
13.
Peles
,
Y.
, and
Kosar
,
A.
,
2005
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.10.1115/1.2137760
14.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
15.
Chatzikyriakou
,
D.
,
Buongiorno
,
J.
,
Caviezel
,
D.
, and
Lakehal
,
D.
,
2015
, “
DNS and LES of Turbulent Flow in a Closed Channel Featuring a Pattern of Hemispherical Roughness Elements
,”
Int. J. Heat Fluid Flow
,
53
, pp.
29
43
.10.1016/j.ijheatfluidflow.2015.01.002
16.
Kirsh
,
K. L.
,
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2013
, “
Comparison of Pin Surface Heat Transfer in Arrays of Oblong and Cylindrical Pin Fins
,”
ASME J. Turbomach.
,
136
(
4
), p.
041015
.10.1115/1.4025213
17.
Stimpson
,
C. K.
,
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2016
,“
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.10.1115/1.4032167
18.
Thole
,
K. A.
, and
Kirsch
,
K. L.
,
2016
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
.10.1115/1.4034342
19.
Aupoix
,
B.
, and
Spalart
,
P. R.
,
2003
, “
Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
454
462
.10.1016/S0142-727X(03)00043-2
20.
Knopp
,
T.
,
Eisfeld
,
B.
, and
Calvo
,
B.
,
2009
, “
A New Extension for k−ω Turbulence Models to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
54
65
.10.1016/j.ijheatfluidflow.2008.09.009
21.
Hoekstra
,
M.
, and
Eca
,
L.
,
2010
, “
Numerical Aspects of Including Wall Roughness Effects in the SST k−ω Eddy-Viscosity Turbulence Model
,”
Comput. Fluids
,
40
, pp.
299
314
.10.1016/j.compfluid.2010.09.035
22.
Suga
,
K.
,
Craft
,
T. J.
, and
Iacovides
,
H.
,
2006
, “
An Analytical Wall-Function for Turbulent Flows and Heat Transfer Over Rough Walls
,”
Int. J. Heat Fluid Flow
,
27
(
5
), pp.
852
866
.10.1016/j.ijheatfluidflow.2006.03.011
23.
McClain
,
S.
,
Hodge
,
B.
, and
Bons
,
J.
,
2004
, “
Predicting Skin Friction and Heat Transfer for Turbulent Flow Over Real Gas Turbine Surface Roughness Using the Discrete Element Method
,”
ASME J. Turbomach.
,
126
(
2
), pp.
259
267
.10.1115/1.1740779
24.
Kapsis
,
M.
, and
He
,
L.
,
2018
, “
Analysis of Aerothermal Characteristics of Surface Micro-Structures
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
051104
.10.1115/1.4038667
25.
Jenny
,
P.
,
Lee
,
S. H.
, and
Tchelepi
,
H. A.
,
2003
, “
Multiscale Finite Volume Method for Elliptic Problems in Subsurface Flow Simulation
,”
J. Comput. Phys.
,
187
(
1
), pp.
47
67
.10.1016/S0021-9991(03)00075-5
26.
Hou
,
T. Y.
,
Hu
,
X.
, and
Hussain
,
F.
,
2013
, “
Multiscale Modeling of Incompressible Turbulent Flows
,”
J. Comput. Phys.
,
232
(
1
), pp.
383
396
.10.1016/j.jcp.2012.08.029
27.
Hughes
,
T. J. R.
,
Mazzei
,
L.
, and
Jansen
,
K. E.
,
2000
, “
Large Eddy Simulation and the Variational Multiscale Method
,”
Comput. Vis. Sci.
,
3
(
1–2
), pp.
47
59
.10.1007/s007910050051
28.
He
,
L.
,
2012
, “
Block-Spectral Approach to Film-Cooling Modeling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021018
.10.1115/1.4003073
29.
He
,
L.
,
2013
, “
Block-Spectral Mapping for Multi-Scale Solution
,”
J. Comput. Phys.
,
250
, pp.
13
26
.10.1016/j.jcp.2013.05.004
30.
He
,
L. .
,
2018
, “
Multiscale Block Spectral Solution for Unsteady Flows
,”
Int. J. Numer. Methods Fluids
, 86(
10
), pp.
655
678
.10.1002/fld.4472
31.
He
,
L.
,
1993
,“
New Two-Grid Acceleration Method for Unsteady Navier-Stokes Calculations
,”
AIAA J. Propul. Power
,
9
(
2
), pp.
272
280
.10.2514/3.51362
32.
He
,
L.
,
2000
, “
Three-Dimensional Unsteady Navier–Stokes Analysis of Stator–Rotor Interaction in Axial-Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
214
(1), pp.
13
22
.10.1243/0957650001537813
33.
He
,
L.
,
2008
, “
Harmonic Solution of Unsteady Flow Around Blades With Separation
,”
AIAA J.
,
46
(
6
), pp.
1299
1307
.10.2514/1.28656
34.
Liou
,
M. S.
,
2006
, “
A Sequel to AUSM—Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.10.1016/j.jcp.2005.09.020
35.
Jameson
,
A.
,
1991
, “
Time-Dependent Calculations Using Multi-Grid, With Applications to Unsteady Flows Past Airfoil and Wings
,”
AIAA
Paper No.
91
1596
.10.2514/6.1991-1596
36.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No.
92
0439
.10.2514/6.1992-439
37.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
, 23(
4
), pp.
305
316
.10.1080/10618560902773387
38.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
39.
Reynolds
,
O.
,
1895
, “
On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion
,”
Philos. Trans. R. Soc. London
,
186
, pp.
123
164
.10.1098/rsta.1895.0004
40.
Ning
,
W.
, and
He
,
L.
,
2001
, “
Some Modeling Issues on Trailing-Edge Vortex Shedding
,”
AIAA J.
,
39
(
5
), pp.
787
793
.10.2514/2.1411
41.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection in Flow Over an Isothermal Flat-Plate and in Developing and Fully Developed Flow in an Isothermal Tube
,”
ASME J. Heat Transfer
,
95
(
3
), pp.
416
419
.10.1115/1.3450078
42.
Sunden
,
B.
,
1980
, “
Conjugated Heat Transfer From Circular Cylinders in Low Reynolds Number Flow
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1359
1367
.10.1016/0017-9310(80)90210-0
43.
Schaenzer
,
M.
,
2018
, “
Siemens Internal Report
,” Internal Report.
44.
Gupta
,
G.
,
Little
,
Z.
,
Reyes
,
S.
,
Calderon
,
L.
,
Fernandez
,
E.
, and
Kapat
,
J. S.
,
2017
, “
Experimental and Numerical Study of Flow in a Square Duct With Positive and Negative Spherical Wall Features
,”
AIAA
Paper No. 2017-4978. 10.2514/6.2017-4978
You do not currently have access to this content.