Abstract

Near-wall modeling is one of the most challenging aspects of computational fluid dynamic computations. In fact, integration-to-the-wall with low-Reynolds approach strongly affects accuracy of results, but strongly increases the computational resources required by the simulation. A compromise between accuracy and speed to solution is usually obtained through the use of wall functions (WFs), especially in Reynolds averaged Navier–Stokes computations, which normally require that the first cell of the grid to fall inside the log-layer (50 < y+ < 200) (Wilcox, D. C., 1998, Turbulence Modeling for CFD, Vol. 2, DCW Industries, La Cañada, CA). This approach can be generally considered as robust, however the derivation of wall functions from attached flow boundary layers can mislead to nonphysical results in presence of specific flow topologies, e.g., recirculation, or whenever a detailed boundary layer representation is required (e.g., aeroacoustics studies) (Craft, T., Gant, S., Gerasimov, A., Lacovides, H., and Launder, B., 2002, “Wall – Function Strategies for Use in Turbulent Flow CFD,” Proceedings to 12th International Heat Transfer Conference, Grenoble, France, Aug. 18–23). In this work, a preliminary attempt to create an alternative data-driven wall function is performed, exploiting artificial neural networks (ANNs). Whenever enough training examples are provided, ANNs have proven to be extremely powerful in solving complex nonlinear problems (Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y., 2016, Deep Learning, Vol. 1, MIT Press, Cambridge, MA). The learner that is derived from the multilayer perceptron ANN, is here used to obtain two-dimensional, turbulent production and dissipation values near the walls. Training examples of the dataset have been initially collected either from large eddy simulation (LES) simulations of significant 2D test cases or have been found in open databases. Assessments on the morphology and the ANN training can be found in the paper. The ANN has been implemented in a Python environment, using scikit-learn and tensorflow libraries (Scikit-Learn Developers, 2019, “Scikit-learn v0.20.0 User Guide,” Software, Scikit-Learn Developers; Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., 2016, “TensorFlow: A System for Large-Scale Machine Learning,” 12th Symposium on Operating Systems Design and Implementation, Savannah, GA, Nov. 2–4, pp. 265–283). The derived wall function is implemented in openfoam v-17.12 (CFD Direct, 2020, “OpenFoam User Guide v5,” CFD Direct, Caversham, UK), embedding the forwarding algorithm in run-time computations exploiting Python3.6m C_Api library. The data-driven wall function is here applied to k-epsilon simulations of a 2D periodic hill with different computational grids and to a modified compressor cascade NACA aerofoil with sinusoidal leading edge. A comparison between ANN enhanced simulations, available data and standard modelization is here performed and reported.

References

References
1.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD, Vol. 2
,
DCW Industries
,
La Cañada, CA
.
2.
Craft
,
T.
,
Gant
,
S.
,
Gerasimov
,
A.
,
Lacovides
,
H.
, and
Launder
,
B.
,
2002
, “
Wall – Function Strategies for Use in Turbulent Flow CFD
,”
Proceedings to 12th International Heat Transfer Conference
,
Grenoble
,
France
, Aug. 18–23. 10.1615/IHTC12.3100
3.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2016
,
Deep Learning, Vol. 1, MIT Press
,
Cambridge, MA
.
4.
Scikit-Learn Developers
,
2019
, “
Scikit-learn v0.20.0 User Guide
,” Software, Scikit-Learn Developers.https://scikit-learn.org/0.20/_downloads/scikit-learn-docs.pdf
5.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
,
Isard
,
M.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D. G.
,
Steiner
,
B.
,
Tucker
,
P.
,
Vasudevan
,
V.
,
Warden
,
P.
,
Wicke
,
M.
,
Yu
,
Y.
, and
Zheng
,
X.
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
12th Symposium on Operating Systems Design and Implementation
, Savannah, GA, Nov. 2–4, pp.
265
283
.https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
6.
CFD Direct
,
2020
, “
OpenFoam User Guide v5
,” CFD Direct, Caversham, UK.https://cfd.direct/openfoam/user-guide-v5/
7.
Pope, S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, MA
.10.1017/CBO9780511840531
8.
Zhang
,
K.
, and
Singh
,
A. P.
,
2015
, “
New Approaches in Turbulence and Transition Modeling Using Datadriven Techniques
,”
AIAA
Paper No. 2015-1284.10.2514/6.2015-1284
9.
Kuts
,
J.
,
2017
, “
Deep Learning in Fluid Dynamics
,”
J. Fluid Mech.
,
814
, pp.
1
4
.10.1017/jfm.2016.803
10.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.10.1017/jfm.2016.615
11.
Sandberg
,
R. D.
,
Tan
,
R.
,
Weatheritt
,
J.
,
Ooi
,
A.
,
Haghiri
,
A.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2018
, “
Applying Machine Learnt Explicit Algebraic Stress and Scalar Flux Models to a Fundamental Trailing Edge Slot
,”
ASME J. Turbomach.
,
140
(
10
), p.
101008
.
12.
Tracey
,
B. D.
,
Duraisamy
,
K.
, and
Alonso
,
J. J.
,
2015
, “
A Machine Learning Strategy to Assist Turbulence Model Development
,”
AIAA
Paper No. 2015-1287.10.2514/6.2015-1287
13.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2017
,
The Elements of Statistical Learning
, 2nd ed.,
Springer
.
14.
Wang
,
J.-X.
,
Wu
,
J.-L.
, and
Xiao
,
H.
,
2017
, “
A Physics Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
), p.
34603
.10.1103/PhysRevFluids.2.034603
15.
Mellen
,
C. P.
,
Fröhlich
,
J.
, and
Rodi
,
W.
, 2000, “
Large Eddy Simulation of the Flow Over Periodic Hills
,”
16th IMACS World Congress
,
Lausanne
,
Switzerland
, Aug. 21–25, pp.
21
25
.https://www.semanticscholar.org/paper/Large-eddy-simulation-of-the-flow-over-periodic-Mellen-Fr%C3%B6hlich/45fb3f443abce883dacbd02c64c49752ad52b969
16.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1997
, “
Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
, 330, pp.
349
374
.10.1017/S0022112096003941
17.
Bernardini
,
M.
,
Pirozzoli
,
S.
, and
Orlandi
,
P.
,
2014
, “
Velocity Statistics in Turbulent Channel Flow Up to Ret = 4000
,”
J. Fluid Mech.
,
742
, pp.
171
191
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/velocity-statistics-in-turbulent-channel-flow-up-to-retau-4000/C0083AFEF8D8597018045165B8CC0ECF
18.
Davidson
,
L.
,
1997
, “
Large Eddy Simulation: A Dynamic One-Equation Subgrid Model for Three-Dimensional Recirculating_Flows
,”
11th International Symposium on Turbulent Shear Flow
, Grenoble, France, Vol.
3
, Sept. 8–10, pp.
26.1
26.6
.
19.
Qiu
,
J.
,
Wu
,
Q.
,
Ding
,
G.
,
Xu
,
Y.
, and
Feng
,
S.
,
2016
, “
A Survey of Machine Learning for Big Data Processing
,”
EURASIP J. Adv. Signal Process.
,
2016
(
1
), p.
67
.10.1186/s13634-016-0355-x
20.
Duraisamy
,
K.
,
Laccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
, 51, pp.
357
377
.https://arxiv.org/abs/1804.00183
21.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv preprint
arXiv:1412.6980
.https://arxiv.org/abs/1412.6980
22.
Temmerman, L.
,
2001
, “
Large Eddy Simulation of Separated Flow in a Streamwise Periodic Channel Constriction
,”
Turbul. Shear Flow Phenom.
, 3, pp.
399
404
.https://www.researchgate.net/publication/286914990_Large_eddy_simulation_of_separated_flow_in_a_streamwise_periodic_channel_constriction
23.
Liu
,
F.
,
2016
, “
A Thorough Description of How Wall Functions Are Implemented in OpenFOAM
,”
Proceedings of CFD With OpenSource Software
, pp.
1
33
.http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf
24.
Rapp
,
C.
, and
Manhart
,
M.
,
2011
, “
Flow Over Periodic Hills: An Experimental Study
,”
Exp Fluids
,
51
(
1
), pp.
247
269
.10.1007/s00348-011-1045-y
25.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
J.
,
2013
, “
On the Role of Leading-Edge Bumps in the Control of Stall Onset in Axial Fan Blades
,”
ASME J. Fluid Eng.
,
135
(
8
), p.
081104
.10.1115/1.4024115
26.
Angelini
,
A.
,
Corsini
,
A.
,
Delibra
,
G.
, and
Tieghi
,
L.
,
2019
, “
Exploration of Axial Fan Design Space Using a Metamodel for Aerodynamic Properties of NACA 4-Digit Profiles
,”
Int. J. Turbomach. Propulsion Power
,
4
(
2
), p.
11
.10.3390/ijtpp4020011
You do not currently have access to this content.