Abstract

Fatigue behavior of woven melt infiltrated (MI) SiC/SiC ceramic matrix composites (CMCs) was investigated under a tension–tension fatigue condition in a combustion environment. A special experimental facility is designed to subject the CMCs under simultaneous mechanical and combustion conditions which is more representative of some conditions experienced by the hot section components of a jet engine. The MI SiC/SiC CMCs considered in this study consists of a SiC matrix densified with liquid Si infiltration, BN interphase, and reinforced with two different fibers, namely, Hi–Nicalon type S and Tyranno SA fibers. A high velocity oxygen fuel (HVOF) gun is used to create the representative combustion condition and a horizontal hydraulic MTS machine to apply the mechanical loading. Several fatigue tests were conducted at different stress levels with a stress ratio of 0.1, frequency of 1 Hz, and the specimen surface temperature at 1200 °C. Similar tests were conducted in an isothermal furnace condition at 1200 °C for comparison. Electrical resistance (ER) was used to monitor the tests. A reduction in the fatigue life was observed for the two MI systems under combustion conditions in comparison to the isothermal furnace condition at the same applied stress level. This is attributed to the presence of harsh combustion environment present in the burner rig. ER showed some promising results in monitoring the temperature and detecting damage in the specimen. Runout condition was set as 24 H (86400 cycles) in burner rig and 100 H (360000 cycles) in furnace environment. Specimens that achieved the runout condition were subsequently tested under monotonic tension testing at room temperature after cooldown to evaluate the residual properties. Residual strength results showed a significant strength reduction in both the furnace and burner rig environments. Post-test microscopy was conducted on the fracture surfaces of the failed specimens to understand the oxidation behavior and damage mechanisms.

References

References
1.
Brewer
,
D.
,
1999
, “
HSR/EPM Combustor Materials Development Program
,”
Mater. Sci. Eng.: A
,
261
(
1–2
), pp.
284
291
.10.1016/S0921-5093(98)01079-X
2.
Morscher
,
G. N.
, and
Pujar
,
V. V.
,
2009
, “
Design Guidelines for in‐Plane Mechanical Properties of SiC Fiber‐Reinforced Melt‐Infiltrated SiC Composites
,”
Appl. Ceram. Technol.
,
6
(
2
), pp.
151
163
.10.1111/j.1744-7402.2008.02331.x
3.
Ruggles Wrenn
,
M. B.
, and
Sharma
,
V.
,
2011
, “
Effects of Steam Environment on Fatigue Behavior of Two SiC/[SiC+Si3N4] Ceramic Composites at 1300 °C
,”
Appl. Compos. Mater.
,
18
(
5
), pp.
1
12
.10.1007/s10443-010-9163-x
4.
Ruggles Wrenn
,
M. B.
,
Boucher
,
N.
, and
Przybyla
,
C.
,
2018
, “
Fatigue of Three Advanced SiC/SiC Ceramic Matrix Composites at 1200 °C in Air and in Steam
,”
Appl. Ceram. Technol.
,
15
(
1
), pp.
3
15
.10.1111/ijac.12773
5.
Ruggles Wrenn
,
M. B.
,
Christensen
,
D. T.
,
Chamberlain
,
A. L.
,
Lane
,
J. E.
, and
Cook
,
T. S.
,
2011
, “
Effect of Frequency and Environment on Fatigue Behavior of a CVI SiC/SiC Ceramic Matrix Composite at 1200 °C
,”
Compos. Sci. Technol.
,
71
(
2
), pp.
190
196
.10.1016/j.compscitech.2010.11.008
6.
Reynaud
,
P.
,
1996
, “
Cyclic Fatigue of Ceramic-Matrix Composites at Ambient and Elevated Temperatures
,”
Compos. Sci. Technol.
,
56
(
7
), pp.
809
814
.10.1016/0266-3538(96)00025-5
7.
Morscher
,
G. N.
,
Ojard
,
G.
,
Miller
,
R.
,
Gowayed
,
Y.
,
Santhosh
,
U.
,
Ahmad
,
J.
, and
John
,
R.
,
2008
, “
Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3305
3313
.10.1016/j.compscitech.2008.08.028
8.
Morscher
,
G. N.
, and
Pujar
,
V. V.
,
2006
, “
Creep and Stress-Strain Behavior After Creep for SiC Fiber Reinforced, Melt-Infiltrated SiC Matrix Composites
,”
J. Am. Ceram. Soc.
,
89
(
5
), pp.
1652
1658
.10.1111/j.1551-2916.2006.00939.x
9.
Kim
,
T. T.
,
Mall
,
S.
,
Zawada
,
L. P.
, and
Jefferson
,
G.
,
2010
, “
Simultaneous Fatigue and Combustion Exposure of SiC/SiC Ceramic Matrix Composites
,”
J Compos. Mater.
,
44
(
25
), pp.
2991
3016
.10.1177/0021998310373519
10.
Sabelkin
,
V.
,
Mall
,
S.
,
Cook
,
T. S.
, and
Fish
,
J.
,
2016
, “
Fatigue and Creep Behaviors of a SiC/SiC Composite Under Combustion and Laboratory Environments
,”
J. Compos. Mater.
,
50
(
16
), pp.
2145
2153
.10.1177/0021998315602323
11.
Mall
,
S.
,
Nye
,
A. R.
, and
Jefferson
,
G.
,
2012
, “
Tension-Tension Fatigue Behavior of Nextel720/Alumina Under Combustion Environment
,”
Int. J. Appl. Ceram. Technol.
,
9
(
1
), pp.
159
171
.10.1111/j.1744-7402.2011.02625.x
12.
Kim
,
T. T.
,
Mall
,
S.
, and
Zawada
,
L. P.
,
2011
, “
Fatigue Behavior of Hi-Nicalon Type S/BN/SiC Ceramic Matrix Composite in Combustion Environment
,”
Int. J. Appl. Ceram. Technol.
,
8
(
2
), pp.
261
272
.10.1111/j.1744-7402.2010.02558.x
13.
Panakarajupally
,
R. P.
,
Manigandan
,
K.
, and
Morscher
,
G. N.
,
2019
, “
Fatigue Characterization of Melt Infiltrated Ceramic Matrix Composites in Combustion Environment
,”
Tenth International Conference on High Temperature Ceramic Matrix Composites
, Bourdeaux, France, Sept. 22–26.
14.
Panakarajupally
,
R. P.
,
Presby
,
M. J.
,
Manigandan
,
K.
,
Zhou
,
J.
,
Chase
,
G. G.
, and
Morscher
,
G. N.
,
2019
, “
Thermomechanical Characterization of SiC/SiC Ceramic Matrix Composites in a Combustion Facility
,”
Ceram.
,
2
(
2
), pp.
407
425
.10.3390/ceramics2020032
15.
Appleby
,
M. P.
,
Zhu
,
D.
, and
Morscher
,
G. N.
,
2015
, “
Mechanical Properties and Real-Time Damage Evaluations of Environmental Barrier Coated SiC/SiC CMCs Subjected to Tensile Loading Under Thermal Gradients
,”
Surf. Coat. Technol.
,
284
, pp.
318
326
.10.1016/j.surfcoat.2015.07.042
16.
Morscher
,
G. N.
,
Baker
,
C.
, and
Smith
,
C.
,
2014
, “
Electrical Resistance of SiC Fiber Reinforced SiC/SiC Matrix Composites at Room Temperature During Tensile Testing
,”
Int. J. Appl. Ceram. Technol.
,
11
(
2
), pp.
263
272
.10.1111/ijac.12175
17.
Singh
,
Y. P.
,
Panakarajupally
,
R.
,
Presby
,
M. J.
, and
Morscher
,
G. N.
,
2019
, “
Interlaminar Damage Detection Through the Understanding of Direct Current Spreading in Continuous Fiber Reinforced Composites
,”
Compos. Part B-Eng.
,
166
, pp.
722
730
.10.1016/j.compositesb.2019.03.011
18.
Smith
,
C. E.
,
Morscher
,
G. N.
, and
Xia
,
Z. H.
,
2008
, “
Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity
,”
Scr. Mater
,
59
(
4
), pp.
463
466
.10.1016/j.scriptamat.2008.04.033
19.
Morscher
,
G. N.
,
Smith
,
C. E.
,
Maillet
,
E.
,
Baker
,
C.
, and
Mansour
,
R.
,
2014
, “
Electrical Resistance Monitoring of Damage and Crack Growth in Advanced SiC-Based Ceramic Composites
,”
Am. Ceram. Soc. Bull.
,
93
, pp.
28
31
.https://bulletin-archive.ceramics.org/is-cacheable/1516396865074/uctq4m.pdf
20.
Simon
,
C.
,
Rebillat
,
F.
, and
Camus
,
G.
,
2017
, “
Electrical Resistivity Monitoring of a SiC/[Si-B-C] Composite Under Oxidizing Environments
,”
Acta Mater.
,
132
, pp.
586
597
.10.1016/j.actamat.2017.04.070
21.
Simon
,
C.
,
Rebillat
,
F.
,
Herb
,
V.
, and
Camus
,
G.
,
2017
, “
Monitoring Damage Evolution of SiCf/[Si B C] m Composites Using Electrical Resistivity: Crack Density-Based Electromechanical Modeling
,”
Acta Mater.
,
124
, pp.
579
587
.10.1016/j.actamat.2016.11.036
22.
Hinoki
,
T.
,
Curzio
,
E. L.
, and
Snead
,
L. L.
,
2003
, “
Mechanical Properties of High Purity SiC Fiber Reinforced CVI SiC Matrix Composites
,”
J. Fusion Sci. Technol.
,
44
(
1
), pp.
211
218
.10.13182/FST03-A336
23.
Smith
,
C. E.
,
Morscher
,
G. N.
, and
Xia
,
Z.
,
2011
, “
Electrical Resistance as a Non-Destructive Evaluation Technique for SiC/SiC Ceramic Matrix Composites Under Creep Rupture Loading
,”
Int. J. Appl. Ceram. Technol.
,
8
(
2
), pp.
298
307
.10.1111/j.1744-7402.2010.02587.x
24.
Smith
,
C. E.
,
2016
, “
Electrical Resistance Changes of Melt Infiltrated Sic/Sic Subject to Long-Term Tensile Loading at Elevated Temperatures
,” Ph.D. dissertation,
The University of Akron
,
Akron OH
.
You do not currently have access to this content.