Abstract

The unsteady aerodynamics of floating wind turbines is more complex than that of fixed-bottom turbines, and the uncertainty of low-fidelity predictions is higher for floating turbines. Navier–Stokes computational fluid dynamics (CFD) can improve the understanding of rotor and wake aerodynamics of floating turbines, and help improving lower-fidelity models. Here, the flow field of the NREL 5 MW rotor with fixed tower, and subjected to prescribed harmonic pitching past the tower base are investigated using blade-resolved CFD compressible flow COSA simulations and incompressible flow FLUENT simulations. CFD results are also compared to predictions of the FAST wind turbine code, which uses blade element momentum theory (BEMT). The selected rotor pitching parameters correspond to an extreme regime unlikely to occur without faults of the turbine safety system, and thus relevant to extreme aerodynamic load analysis. The rotor power and loads in fixed-tower mode predicted by both CFD codes and BEMT are in very good agreement. For the floating turbine, all predicted periodic profiles of rotor power and thrust are qualitatively similar, but the power peaks of both CFD predictions are significantly higher than those of BEMT. Moreover, cross-comparisons of the COSA and FLUENT predictions of blade static pressure also highlight significant compressible flow effects on rotor power and loads. The CFD analyses of the downstream rotor flow also reveal wake features unique to pitching turbines, primarily the space- and time-dependence of the wake generation strength, highlighted by intermittency of the tip vortex shedding.

References

References
1.
Jonkman
,
J. M.
, and
Matha
,
D.
,
2011
, “
Dynamics of Offshore Floating Wind Turbines Analysis of Three Concepts
,”
Wind Energy
,
14
(
4
), pp.
557
569
.10.1002/we.442
2.
Bak
,
C.
,
2013
, “
Aerodynamic Design of Wind Turbine Rotors
,”
Advances in Wind Turbine Blade Design and Materials
, Vol.
47
,
W.
Gentzsch
and
U.
Harms
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
59
108
.
3.
Sebastian
,
T.
, and
Lackner
,
M.
,
2013
, “
Characterization of the Unsteady Aerodynamics of Offshore Floating Wind Turbines
,”
Wind Energy
,
16
(
3
), pp.
339
352
.10.1002/we.545
4.
Shem
,
X.
,
Chen
,
J.
,
Hu
,
P.
,
Zhu
,
X.
, and
Du
,
X.
,
2018
, “
Study of the Unsteady Aerodynamics of Floating Wind Turbines
,”
Energy
,
145
, pp.
703
809
.10.1016/j.energy.2017.12.100
5.
Wen
,
B.
,
Dong
,
X.
,
Tian
,
X.
,
Peng
,
Z.
,
Zhang
,
W.
, and
Wei
,
K.
,
2018
, “
The Power Performance of an Offshore Floating Wind Turbine in Platform Pitching Motion
,”
Energy
,
154
, pp.
508
521
.10.1016/j.energy.2018.04.140
6.
Drofelnik
,
J.
,
Da Ronch
,
A.
, and
Campobasso
,
M.
,
2018
, “
Harmonic Balance Navier-Stokes Aerodynamic Analysis of Horizontal Axis Wind Turbines in Yawed Wind
,”
Wind Energy
,
21
(
7
), pp.
515
530
.10.1002/we.2175
7.
Bayati
,
I.
,
Bernini
,
L.
,
Zanottu
,
A.
,
Belloli
,
M.
, and
Zasso
,
A.
,
2018
, “
Experimental Investigation of the Unsteady Aerodynamics of FOWT Through PIV and Hot-Wire Wake Measurements
,”
J. Phys.: Conf. Ser.
,
1037
(
5
).https://iopscience.iop.org/article/10.1088/1742-6596/1037/5/052024
8.
Tran
,
T.-T.
, and
Kim
,
D.-H.
,
2015
, “
The Platform Pitching Motion of Floating Offshore Wind Turbine: A Preliminary Unsteady Aerodynamic Analysis
,”
J. Wind Eng. Ind. Aerodyn.
,
142
, pp.
65
81
.10.1016/j.jweia.2015.03.009
9.
Tran
,
T.-T.
, and
Kim
,
D.-H.
,
2016
, “
CFD Study Into the Influence of Unsteady Aerodynamic Interference on Wind Turbine Surge Motion
,”
Renewable Energy
,
90
, pp.
204
228
.10.1016/j.renene.2015.12.013
10.
Tran
,
T.-T.
, and
Kim
,
D.-H.
,
2016
, “
Fully Coupled Aero-Hydrodynamic Analysis of a Semi-Submersible FOWT Using a Dynamic Fluid Body Interaction Approach
,”
Renewable Energy
,
92
, pp.
244
261
.10.1016/j.renene.2016.02.021
11.
Jonkman
,
J.
, and
Sprague
,
M.
, “
OpenFAST: An Aeroelastic Computer-Aided Engineering Tool for Horizontal Axis Wind Turbines
,”
National Renewable Energy Laboratory
,
Golden, CO
, accessed Mar. 17, 2020, https://nwtc.nrel.gov/OpenFAST
12.
Liu
,
Y.
,
Xiao
,
Q.
,
Incecik
,
A.
,
Peyrard
,
C.
, and
Wan
,
D.
,
2017
, “
Establishing a Fully Coupled CFD Analysis Tool for Floating Offshore Wind Turbines
,”
Renewable Energy
,
112
, pp.
280
301
.10.1016/j.renene.2017.04.052
13.
Lienard
,
C.
,
Boisard
,
R.
, and
Daudin
,
C.
,
2019
, “
Aerodynamic Behavior of a Floating Offshore Wind Turbine
,”
AIAA Paper No. 2009-269
.10.2514/6.2009-269
14.
Leble
,
V.
, and
Barakos
,
G.
,
2017
, “
10-MW Wind Turbine Performance Under Pitching and Yawing Motion
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041003
.10.1115/1.4036497
15.
Campobasso
,
M.
,
Yan
,
M.
,
Drofelnik
,
J.
,
Piskopakis
,
A.
, and
Caboni
,
M.
,
2014
, “
Compressible Reynolds-Avergaed Navier-Stokes Analysis of Wind Turbine Turbulent Flows Using a Fully Coupled Low-Speed Preconditioned Multigrid Solver
,”
ASME Paper No. GT2014-25562.
10.1115/GT2014-25562
16.
Campobasso
,
M.
,
Sanvito
,
A.
,
Drofelnik
,
J.
,
Jackson
,
A.
,
Zhou
,
Y.
,
Xiao
,
Q.
, and
Croce
,
A.
,
2018
, “
Compressible Navier-Stokes Analysis of Floating Wind Turbine Rotor Aerodynamics
,”
ASME Paper No. IOWTC2018-1059.
10.1115/IOWTC2018-1059
17.
Menter
,
F.
,
1994
, “
Two-Equation Turbulence-Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
18.
Campobasso
,
M.
,
Piskopakis
,
A.
,
Drofelnik
,
J.
, and
Jackson
,
A.
,
2013
, “
Turbulent Navier-Stokes Analysis of an Oscillating Wing in a Power-Extraction Regime Using the Shear Stress Transport Turbulence Model
,”
Comput. Fluids
,
88
, pp.
136
155
.10.1016/j.compfluid.2013.08.016
19.
Campobasso
,
M.
,
Gigante
,
F.
, and
Drofelnik
,
J.
,
2014
, “
Turbulent Unsteady Flow Analysis of Horizontal Axis Wind Turbine Airfoil Aerodynamics Based on the Harmonic Balance Reynolds-Averaged Navier–Stokes Equations
,”
ASME Paper No. GT2014-25559.
10.1115/GT2014-25559
20.
Campobasso
,
M.
,
Drofelnik
,
J.
, and
Gigante
,
F.
,
2016
, “
Comparative Assessment of the Harmonic Balance Navier-Stokes Technology for Horizontal and Vertical Axis Wind Turbine Aerodynamics
,”
Comput. Fluids
,
136
, pp.
345
370
.10.1016/j.compfluid.2016.06.023
21.
Chen
,
J.
,
Ghosh
,
A.
,
Sreenivas
,
K.
, and
Whitfield
,
D.
,
1997
, “
Comparison of Computations Using Navier-Stokes Equations in Rotating and Fixed Coordinates for Flow Through Turbomachinery
,”
35th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Jan. 6–9,
AIAA
Paper No.
97
0878
.10.2514/6.1997-878
22.
Campobasso
,
M.
, and
Drofelnik
,
J.
,
2012
, “
Compressible Navier-Stokes Analysis of an Oscillating Wing in a Power-Extraction Regime Using Efficient Low-Speed Preconditioning
,”
Comput. Fluids
,
67
, pp.
26
40
.10.1016/j.compfluid.2012.07.002
23.
Drofelnik
,
J.
, and
Campobasso
,
M.
,
2016
, “
Comparative Turbulent Three-Dimensional Navier-Stokes Hydrodynamic Analysis and Performance Assessment of Oscillating Wings for Renewable Energy Applications
,”
Int. J. Mar. Energy
,
16
, pp.
100
115
.10.1016/j.ijome.2016.05.009
24.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Gigante
,
F.
,
Ferrara
,
G.
,
Campobasso
,
M.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier-Stokes CFD Technologies for Darrieus Wind Turbines Performance Analysis
,”
ASME Paper No. GT2015-42663.
10.1115/GT2015-42663
25.
Balduzzi
,
F.
,
Drofelnik
,
J.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Campobasso
,
M.
,
2017
, “
Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier-Stokes CFD Assessment
,”
Energy
,
128
, pp.
550
563
.10.1016/j.energy.2017.04.017
26.
Balduzzi
,
F.
,
Marten
,
D.
,
Bianchini
,
A.
,
Drofelnik
,
J.
,
Ferrari
,
L.
,
Campobasso
,
M. S.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
, and
Paschereit
,
C. O.
,
2018
, “
Three-Dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022602
.10.1115/1.4037750
27.
Sanvito
,
A.
,
Campobasso
,
M.
, and
Persico
,
G.
,
2019
, “
Assessing the Sensitivity of Stall-Regulated Wind Turbine Power to Blade Design Using High-Fidelity CFD
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101022
.10.1115/1.4044731
28.
Campobasso
,
M.
, and
Baba-Ahmadi
,
M.
,
2012
, “
Analysis of Unsteady Flows Past Horizontal Axis Wind Turbine Airfoils Based on Harmonic Balance Compressible Navier-Stokes Equations With Low-Speed Preconditioning
,”
ASME J. Turbomach.
,
134
(
6
), p.
061020
.10.1115/1.4006293
29.
Jackson
,
A.
,
Campobasso
,
M.
, and
Drofelnik
,
J.
,
2018
, “
Load Balance and Parallel I/O: Optimising COSA for Large Simulations
,”
Comput. Fluids
,
173
, pp.
206
215
.10.1016/j.compfluid.2018.03.007
30.
Le Pape
,
A.
, and
Lecanu
,
J.
,
2004
, “
3D Navier-Stokes Computations of a Stall-Regulated Wind Turbine
,”
Wind Energy
,
7
(
4
), pp.
309
324
.10.1002/we.129
31.
Turkel
,
E.
,
1987
, “
Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations
,”
J. Comput. Phys.
,
72
(
2
), pp.
277
298
.10.1016/0021-9991(87)90084-2
32.
Weiss
,
J.
, and
Smith
,
W.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.10.2514/3.12946
33.
Campobasso
,
M.
,
Yan
,
M.
,
Bonfiglioli
,
A.
,
Gigante
,
F.
,
Ferrari
,
L.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2018
, “
Low-Speed Preconditioning for Strongly Coupled Integration of Reynolds-Averaged Navier-Stokes Equations and Two-Equation Turbulence Models
,”
Aerosp. Sci. Technol.
,
77
, pp.
286
298
.10.1016/j.ast.2018.03.015
34.
Weiss
,
J.
,
Maruszewski
,
J.
, and
Smith
,
W.
,
1999
, “
Implicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid
,”
AIAA J.
,
37
(
1
), pp.
29
36
.10.2514/2.689
35.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
NREL
,
Golden, CO
,
Report No. NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
36.
Campobasso
,
M.
,
Cavazzini
,
A.
, and
Minisci
,
E.
,
2020
, “
Rapid Estimate of Wind Turbine Energy Loss Due to Blade Leading Edge Delamination Using Artificial Neural Networks
,”
ASME J. Turbomach.
,
142
(
7
), p.
071002
.10.1115/1.4047186
37.
Castorrini
,
A.
,
Cappugi
,
L.
,
Bonfiglioli
,
A.
, and
Campobasso
,
M.
,
2020
, “
Assessing Wind Turbine Energy Losses Due to Blade Leading Edge Erosion Cavities With Parametric Cad and 3D CFD
,”
TORQUE Conference
,
Delft, The Netherlands
, Sept. 28–Oct. 2,
Paper No. 2020-88
.https://iopscience.iop.org/article/10.1088/1742-6596/1618/5/052015
38.
Chow
,
R.
, and
van Dam
,
C.
,
2012
, “
Verification of Computational Simulations of the NREL 5 MW Rotor With a Focus on Inboard Flow Separation
,”
Wind Energy
,
15
(
8
), pp.
967
981
.10.1002/we.529
39.
Nejad
,
A.
,
Bachynski
,
E.
, and
Moan
,
T.
,
2019
, “
Effect of Axial Acceleration on Drivetrain Responses in a Spar-Type Floating Wind Turbine
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
3
), p.
031901
.10.1115/1.4041996
40.
Ortolani
,
A.
,
Persico
,
G.
,
Drofelnik
,
J.
,
Jackson
,
A.
, and
Campobasso
,
M.
,
2020
, “
Cross-Comparative Analysis of Loads and Power of Pitching Floating Offshore Wind Turbine Rotors Using Frequency-Domain Navier-Stokes CFD and Blade Element Momentum Theory
,”
TORQUE Conference
,
Delft, The Netherlands
, Sept. 28–Oct. 2,
Paper No. 2020-89
.https://iopscience.iop.org/article/10.1088/1742-6596/1618/5/052016
41.
Glauert
,
H.
,
1928
, “
The Effect of Compressibility on the Lift of an Aerofoil
,”
Proc. R. Soc. A
,
118
(
779
), pp.
113
119
.https://www.jstor.org/stable/94892
42.
Cavazzini
,
A.
,
Campobasso
,
M.
,
Marconcini
,
M.
,
Pacciani
,
R.
, and
Arnone
,
A.
,
2019
, “
Harmonic Balance Navier–Stokes Analysis of Tidal Stream Turbine Wave Loads
,”
Recent Advances in CFD for Wind and Tidal Offshore Turbines
,
E.
Ferrer
and
A.
Montlaur
, eds.,
Springer
,
Berlin
.
You do not currently have access to this content.