Abstract

The reduction of NOx emissions remains a driving factor in the design process of swirl-stabilized combustion systems, to meet legislative restrictions. In reacting swirl flows, hydrodynamic coherent structures, such as periodic large-scale vortices in the shear layer, induce zones with increased heat release rate fluctuations in connection with temperature peaks, which lead to an increase of NOx emissions. Such large-scale vortices can be induced by the helical coherent structure known as precessing vortex core (PVC), which influences the flow and flame dynamics under certain operating conditions. We developed an active flow control system, allowing for a targeted actuation of the PVC, to investigate its impact on combustion properties such as NOx emissions. In this work, a perfectly premixed flame, which slightly damps the PVC, is studied in detail. Since the PVC is slightly damped, it can be precisely excited by means of open-loop flow control. In connection with time-resolved OH*-chemiluminescence and stereoscopic particle image velocimetry (PIV) measurements, the impact of the actuated PVC on flow and flame dynamics is characterized. It turns out that the PVC rolls up the inner shear layer, which results in an interaction of PVC-induced vortices and flame. This interaction considerably influences the measured level of NOx emissions, which grows with increasing PVC amplitude in a perfectly premixed flame. Nearly, the same increase is measured for partially premixed conditions. This is in contrast to previous studies, where the PVC is assumed to reduce the NOx emissions due to vortex-enhanced mixing.

References

1.
Gallaire
,
F.
,
Ruith
,
M.
,
Meiburg
,
E.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
2006
, “
Spiral Vortex Breakdown as a Global Mode
,”
J. Fluid Mech.
,
549
(
1
), pp.
71
80
.10.1017/S0022112005007834
2.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
3.
Petz
,
C.
,
Hege
,
H.-C.
,
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Wygnanski
,
I.
, and
Noack
,
B. R.
,
2011
, “
Global Modes in a Swirling Jet Undergoing Vortex Breakdown
,”
Phys Fluids
,
23
(
9
), p.
091102
.10.1063/1.3640007
4.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Paschereit
,
C. O.
,
2013
, “
Why Nonuniform Density Suppresses the Precessing Vortex Core
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121506
.10.1115/1.4025130
5.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.10.1016/j.proci.2014.07.035
6.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
, 162(8), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
7.
Paredes
,
P.
,
Terhaar
,
S.
,
Oberleithner
,
K.
,
Theofilis
,
V.
, and
Paschereit
,
C. O.
,
2015
, “
Global and Local Hydrodynamic Stability Analysis as a Tool for Combustor Dynamics Modeling
,”
ASME
Turbo Paper No. GT2015-44173. 10.1115/GT2015-44173
8.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
9.
Qadri
,
U. A.
,
Mistry
,
D.
, and
Juniper
,
M. P.
,
2013
, “
Structural Sensitivity of Spiral Vortex Breakdown
,”
J. Fluid Mech.
,
720
, pp.
558
581
.10.1017/jfm.2013.34
10.
Tammisola
,
O.
, and
Juniper
,
M.
,
2016
, “
Coherent Structures in a Swirl Injector at Re=4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
11.
Kaiser
,
T. L.
,
Poinsot
,
T.
, and
Oberleithner
,
K.
,
2018
, “
Stability and Sensitivity Analysis of Hydrodynamic Instabilities in Industrial Swirled Injection Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051506
.10.1115/1.4038283
12.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech. B. Fluids
,
59
, pp.
205
218
.10.1016/j.euromechflu.2016.05.004
13.
Müller
,
J. S.
,
Lückoff
,
F.
, and
Oberleithner
,
K.
,
2019
, “
Guiding Actuator Designs for Active Flow Control of the Precessing Vortex Core by Adjoint Linear Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041028
.10.1115/1.4040862
14.
Müller
,
J. S.
,
Lückoff
,
F.
,
Paredes
,
P.
,
Theofilis
,
V.
, and
Oberleithner
,
K.
,
2020
, “
Receptivity of the Turbulent Precessing Vortex Core: Synchronization Experiments and Global Adjoint Linear Stability Analysis
,”
J. Fluid Mech.
,
888
, p.
A3
.10.1017/jfm.2019.1063
15.
Hill
,
D. C.
,
1995
, “
Adjoint Systems and Their Role in the Receptivity Problem for Boundary Layers
,”
J. Fluid Mech.
,
292
, pp.
183
204
.10.1017/S0022112095001480
16.
Magri
,
L.
, and
Juniper
,
M.
,
2014
, “
Global Modes, Receptivity, and Sensitivity Analysis of Diffusion Flames Coupled With Duct Acoustics
,”
J. Fluid Mech.
,
752
, pp.
237
265
.10.1017/jfm.2014.328
17.
Kuhn
,
P.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Control of the Precessing Vortex Core by Open and Closed-Loop Forcing in the Jet Core
,”
ASME
Paper No. GT2016-57686.10.1115/GT2016-57686
18.
Lückoff
,
F.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2017
, “
Characterization of Different Actuator Designs for the Control of the Precessing Vortex Core in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041503
.10.1115/1.4038039
19.
Lückoff
,
F.
, and
Oberleithner
,
K.
,
2019
, “
Excitation of the Precessing Vortex Core by Active Flow Control to Suppress Thermoacoustic Instabilities in Swirl Flames
,”
Int. J. Spray Combust. Dyn.
,
11
, pp. 1–23.10.1177/1756827719856237
20.
Lückoff
,
F.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2019
, “
Phase-Opposition Control of the Precessing Vortex Core in Turbulent Swirl Flames for Investigation of Mixing and Flame Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111008
.10.1115/1.4044469
21.
Terhaar
,
S.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2015
, “
Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam-Diluted Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041503
.10.1115/1.4028392
22.
Stöhr
,
M.
,
Arndt
,
C.
, and
Meier
,
W.
,
2015
, “
Transient Effects of Fuel-Air Mixing in a Partially-Premixed Turbulent Swirl Flame
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3327
3335
.10.1016/j.proci.2014.06.095
23.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust Flame
,
158
(
1
), pp.
155
171
.10.1016/j.combustflame.2010.08.004
24.
Claypole
,
T.
, and
Syred
,
N.
,
1981
, “
The Effect of Swirl Burner Aerodynamics on Nox Formation
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
81
89
.10.1016/S0082-0784(81)80013-6
25.
Fric
,
T. F.
,
1993
, “
Effects of Fluel-Air Unmixedness on No(x) Emissions
,”
J. Propul. Power
,
9
(
5
), pp.
708
713
.10.2514/3.23679
26.
Schadow
,
K.
, and
Gutmark
,
E.
,
1992
, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
(
2
), pp.
117
132
.10.1016/0360-1285(92)90020-2
27.
Renard
,
P.-H.
,
Thévenin
,
D.
,
Rolon
,
J.
, and
Candel
,
S.
,
2000
, “
Dynamics of Flame/Vortex Interactions
,”
Prog. Energy Combust. Sci.
,
26
(
3
), pp.
225
282
.10.1016/S0360-1285(00)00002-2
28.
Ducruix
,
S.
,
Candel
,
S.
,
Durox
,
D.
, and
Schuller
,
T.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.10.2514/2.6182
29.
Paschereit
,
C.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
1998
, “
Structure and Control of Thermoacoustic Instabilities in a Gas-Turbine Combustor
,”
Combust. Sci. Technol.
,
138
(
1–6
), pp.
213
232
.10.1080/00102209808952069
30.
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2008
, “
Combustion Instability and Emission Control by Pulsating Fuel Injection
,”
ASME J. Turbomach.
,
130
(
1
), p.
011012
.10.1115/1.2749292
31.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structures in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
.10.1103/PhysRevFluids.1.050509
32.
Haller
,
G.
,
2001
, “
Lagrangian Structures and the Rate of Strain in a Partition of Two-Dimensional Turbulence
,”
Phys. Fluids
,
13
(
11
), pp.
3365
3385
.10.1063/1.1403336
33.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Tomographic Reconstruction of Heat Release Rate Perturbations Induced by Helical Modes in Turbulent Swirl Flames
,”
Exp. Fluids
,
54
(
4
), pp.
1
17
.10.1007/s00348-013-1498-2
34.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.10.1016/S0376-0421(00)00008-7
35.
Soria
,
J.
,
1996
, “
An Adaptive Cross-Correlation Digital PIV Technique for Unsteady Flow Investigations
,”
Proceedings of First Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion
, University of Sydney, Sydney, Australia, pp.
29
48
.
36.
Huang
,
H. T.
,
Fiedler
,
H. E.
, and
Wang
,
J. J.
,
1993
, “
Limitation and Improvement of PIV
,”
Exp. Fluids
,
15-15
(
4–5
), pp.
263
273
.10.1007/BF00223404
37.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
38.
Leuckel
,
W.
,
1967
, “
Swirl Intensities, Swirl Types and Energy Losses of Different Swirl Generating Devices
,” International Flame Research Foundation, Ijmuiden, The Netherlands, Report No. G02/a/16.
39.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
(
004
), pp.
798
828
.10.1017/jfm.2016.103
40.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
41.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Advanced Identification of Coherent Structures in Swirl-Stabilized Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021503
.10.1115/1.4034261
42.
Rukes
,
L.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Methods for the Extraction and Analysis of the Global Mode in Swirling Jets Undergoing Vortex Breakdown
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022604
.10.1115/1.4034315
43.
Lückoff
,
F.
,
Kaiser
,
T.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2020
, “
Mean Field Coupling Mechanisms Explaining the Impact of the Precessing Vortex Core on the Flame Transfer Function
,”
Combust. Flame
(in press).
44.
Frederick
,
M.
,
Manoharan
,
K.
,
Dudash
,
J.
,
Brubaker
,
B.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2018
, “
Impact of Precessing Vortex Core Dynamics on Shear Layer Response in a Swirling Jet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061503
.10.1115/1.4038324
45.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow-Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.10.1016/j.combustflame.2010.07.011
46.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex Flame Interaction in a Gas Turbine Model Compbustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.10.1016/j.combustflame.2012.03.020
47.
Göke
,
S.
,
Göckeler
,
K.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2010
, “
Computational and Experimental Study of Premixed Combustion at Ultra Wet Conditions
,”
ASME
Paper No. GT2010-23417.10.1115/GT2010-23417
48.
Göke
,
S.
,
Füri
,
M.
,
Bourque
,
G.
,
Bobusch
,
B.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on the Combustion of Natural Gas and Hydrogen in Premixed and Rich-Quench-Lean Combustors
,”
Fuel Process. Technol.
,
107
, pp.
14
22
.10.1016/j.fuproc.2012.06.019
49.
Correa
,
S. M.
,
1993
, “
A Review of No(x) Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
50.
Bradley
,
D.
,
1998
, “
Premixed Turbulent Flame Instability and NO Formation in a Lean-Burn Swirl Burner
,”
Combust. Flame
,
115
(
4
), pp.
515
538
.10.1016/S0010-2180(98)00024-8
51.
Joos
,
F.
,
2006
,
Technische Verbrennung
,
Springer Press
,
Berlin
.
52.
Steinberg
,
A. M.
, and
Driscoll
,
J. F.
,
2009
, “
Straining and Wrinkling Processes During Turbulence–Premixed Flame Interaction Measured Using Temporally-Resolved Diagnostics
,”
Combust. Flame
,
156
(
12
), pp.
2285
2306
.10.1016/j.combustflame.2009.06.024
53.
Cetegen
,
B. M.
,
2006
, “
Scalar Mixing in the Field of a Gaseous Laminar Line Vortex
,”
Exp. Fluids
,
40
(
6
), pp.
967
976
.10.1007/s00348-006-0133-x
You do not currently have access to this content.