Abstract

A turbocharger retrofitting platform utilizing one-dimensional (1D) models for calculating turbomachinery components map and a fully coupled process for integration with the turbomachinery components and the diesel engine, is presented. The platform has been developed with two modes of operation, allowing the retrofitting process to become fully automatic. In the first mode, available turbocomponents are examined, in order to select the one that best matches the entire engine system, aiming to retain or improve the diesel engine efficiency. In the second mode, an optimization procedure is employed, in order to redesign the compressor to match the entire system in an optimum way. Dimensionless parameters are used as optimization variables, for a given compressor mass flow and power. A retrofitting case study is presented, where three retrofitting options are analyzed (compressor retrofit, turbocharger retrofit, and compressor redesign). In the first and second option, turbocharger retrofitting is carried out, using available turbocomponents. It is shown that initial performance cannot be reconstituted using off-the-self-solutions. In the third option, compressor designing is performed, using the optimization mode, in order to provide an improved retrofitting solution, aiming to at least reconstituting the original diesel engine performance. Finally, a CFD analysis is carried out, in order to validate the compressor optimization tool capability to capture the performance trends, based on geometry variation.

References

1.
Bricknel
,
D.
,
2006
, “
Marine Gas Turbine Propulsion System Application
,”
ASME
Paper No. GT2006-90751. 10.1115/GT2006-90751
2.
Button
,
R. W.
,
Martin
,
B.
,
Sollinger
,
J.
, and
Tidwell
,
A.
,
2015
,
Assessment of Surface Ship Maintenance Requirements
,
RAND Corporation
,
Santa Monica, CA
.
3.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
Macmillan Press, Ltd
.,
London
.
4.
Galvas
,
M. R.
,
1973
, “
Fortran Program for Predicting Off Design Performance of Centrifugal Compressor
,” NASA Lewis Research Center, Cleveland, OH, Report No.
TN D-7487
.https://strives-uploads-prod.s3.us-gov-west-1.amazonaws.com/19740001912/19740001912.pdf?AWSAccessKeyId=AKIASEVSKC45ZTTM42XZ±Expires=1602270959±Signature=cM0X222Q1LK21ktks9wONmwEPSA%3D
5.
Aungier
,
R. H.
,
1995
, “
Mean Streamline Aerodynamic Performance Analysis of Centrifugal Compressor
,”
ASME J. Turbomach.
,
117
(
3
), pp.
360
366
.10.1115/1.2835669
6.
Rodgers
,
C.
,
1964
, “
Typical Performance Characteristics of Gas Turbine Radial Compressors
,”
ASME J. Eng. Power
,
86
(
2
), pp.
161
170
.10.1115/1.3677568
7.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
,
Wilder, VT
.
8.
Stuart
,
C.
,
Spence
,
S.
,
Filsinger
,
D.
,
Starke
,
A.
, and
Kim
,
S. I.
,
2017
, “
Characterising the Influence of Impeller Exti Recirculation on Centrifugal Compressor Work Input
,”
ASME
Paper No. GT2017-63047. 10.1115/GT2017-63047
9.
Stuart
,
C.
,
Spence
,
S.
,
Filsinger
,
D.
,
Starke
,
A.
, and
Kim
,
S.
,
2018
, “
A Three-Zone Modelling Approach for Centrifugal Compressor Slip Factor Prediction
,”
ASME
Paper No. GT2018-75324. 10.1115/GT2018-75324
10.
Rossetti
,
A.
,
Ardizzon
,
G.
,
Pavesi
,
G.
, and
Cavazzini
,
G.
,
2010
, “
An Optimum Design Procedure for an Aerodynamic Radial Diffuser With Incompressible Flow at Different Reynolds Numbers
,”
IMECHE J. Power Energy
,
224
(
1
), pp.
69
84
.10.1243/09576509JPE797
11.
Li
,
P.
,
Gu
,
C.
, and
Song
,
Y.
,
2015
, “
A New Optimization Method for Centrifugal Compressors Based on 1D Calculations and Analyses
,”
Energies J.
,
8
(
5
), pp.
4317
4333
.10.3390/en8054317
12.
Ntonas
,
K.
,
Aretakis
,
N.
,
Roumeliotis
,
I.
,
Pariotis
,
E.
,
Paraskevopoulos
,
Y.
, and
Zannis
,
T.
,
2020
, “
Integrated Simulation Framework for Assessing Turbocharger Fault Effects on Diesel Engine Performance and Operability
,”
ASCE J. Energy Eng.
,
146
(
4
), p.
04020023
.10.1061/(ASCE)EY.1943-7897.0000673
13.
Wasserbauer
,
C. A.
, and
Glassman
,
A. J.
,
1975
, “
Fortran Program for Predicting Off-Design Performance of Radial-Inflow Turbines
,” NASA Lewis Resedrcb Center, Cleveland, OH, Report No.
TN D-8063
. https://www.semanticscholar.org/paper/FORTRAN-program-for-predicting-off-design-of-Wasserbauer-Glassman/8d74f85c13c0a238abae5f69119f4ab2f3280095?p2df
14.
Emara
,
K.
,
Emara
,
A.
, and
Razek
,
E. S. A.
,
2016
, “
Turbocharger Selection and Matching Criteria in a Heavy Duty Diesel Engine
,”
J. Sci. Eng. Res.
,
7
(
12
), pp.
609
615
. https://www.ijser.org/researchpaper/TURBOCHARGER-SELECTION-AND-MATCHING-CRITERIA-IN-A-HEAVY-DUTY-DIESEL-ENGINE.pdf
15.
Swain
,
D.
, and
Engeda
,
A.
,
2014
, “
Effect of Impeller Blade Trimming on the Performance of a 5,5:1 Pressure Ratio Centrifugal Compressor
,”
IMECHE J. Power Energy
,
228
(
8
), pp.
878
888
.10.1177/0957650914549788
16.
Shepherd
,
D. G.
,
1956
,
Principles of Turbomachinery
,
MacMillan and Co LTD
,
New York
.
17.
Antonakis
,
A.
,
Nikolaidis
,
T.
, and
Pilidis
,
P.
,
2017
, “
Multi-Objective Climb Path Optimization for Aircraft/Engine Intergration Using Particle Swarm Optimization
,”
J. Appl. Sci.
,
7
(
5
), pp.
469
22
.10.3390/app7050469
18.
Medic
,
G.
,
Sharma
,
O. P.
,
Jongwook
,
J.
,
Hardin
,
L. W.
,
McCormick
,
D. C.
,
Cousins
,
W. T.
,
Lurie
,
E. A.
,
Shabbir
,
A.
,
Holley
,
B. M.
, and
Van Slooten
,
P. R.
,
2014
, “
High Efficiency Centrifugal Compressor for Rotorcraft Applications
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA/CR-2014-218114/REV1
.https://ntrs.nasa.gov/citations/20180001472
19.
Wiesner
,
F. J.
,
1967
, “
A Review of Slip Factors for Centrifugal Impellers
,”
ASME J. Eng. Power
,
89
(
4
), pp.
558
572
.10.1115/1.3616734
You do not currently have access to this content.