Abstract

The demand for flexible part load operation of stationary gas turbines requires the simultaneous design for sufficient efficiency and lifetime. Both can be addressed by the secondary air system. This paper presents investigations on the concepts of cooling air reduction in off-design, aiming for tradeoffs between fuel burn and turbine blade life. The considered lifetime mechanisms are creep and oxidation. In addition, the effects on emissions from the combustion are outlined. The reference gas turbine is a generic gas turbine in the 300 MW power output segment. The focus is on the first two stages of the four-stage turbine. All simulations are performed by application of a coupled model that essentially connects gas turbine performance with a secondary air system network model. This coupled model is now extended with blade life evaluation and emission models. The results contain tradeoffs for operating points at base and part load. For example, the combined cooling air control of stage 1 rotor blade and stage 2 vane offers savings up to 0.5% fuel flow at 60% of base load in a combined cycle application. This saving is at the expense of creep life. However, some operating points could even operate at higher blade temperatures in order to improve life regarding hot corrosion. Furthermore, generic sensitivities of controlled secondary air supply to cooling layers and hot gas ingestion are discussed. Overall, the presented trades mark promising potentials of modulated secondary air system concepts from a technical point of view.

References

1.
Reichert
,
A. W.
, and
Janssen
,
M.
,
1996
, “
Cooling and Sealing Air System in Industrial Gas Turbine Engines
,”
ASME
Paper No. 96-GT-256
.10.1115/96-GT-256
2.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals-Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), pp.
1071
1082
.10.1115/1.4001177
3.
Hung
,
W. S. Y.
,
1993
, “
Carbon Monoxide Emissions From Gas Turbines as Influenced by Ambient Temperature and Turbine Load
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
588
593
.10.1115/1.2906747
4.
Nag
,
P.
,
Little
,
D.
,
Plant
,
A.
, and
Roth
,
D.
,
2010
, “
Low Load Operational Flexibility for Siemens F- and G-Class Gas Turbines
,”
ASME
Paper No. GT2010-22055.10.1115/GT2010-22055
5.
Li
,
Y. G.
, and
Hales
,
R. L.
,
2003
, “
Steady and Dynamic Performance and Emissions of a Variable Geometry Combustor in a Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
961
971
.10.1115/1.1615253
6.
Woelki
,
D.
,
Foret
,
J.
,
Dittmar
,
L.
,
Kanik
,
M.
, and
Peitsch
,
D.
,
2019
, “
Studies on Part Load Controlled Cooling Air Supplies in Stationary Gas Turbines
,” Proceedings of Global Power and Propulsion Society Conference Beijing, Beijing, China, Sept. 16–18, Paper No.
GPPS-BJ-2019-0221
.10.33737/gpps19-bj-221
7.
Zeller
,
P. W.
, and
Staudacher
,
S.
,
2007
, “
Exergy Analysis for the Performance Evaluation of Different Setups of the Secondary Air System of Aircraft Gas Turbines
,”
ASME
Paper No. GT2007-27278.10.1115/GT2007-27278
8.
Woelki
,
D.
, and
Peitsch
,
D.
,
2019
, “
Modeling and Potentials of Flexible Secondary Air Systems Regarding Mission Fuel Burn Reduction and Blade Creep Life
,”
24th ISABE Conference, International Symposium on Air Breathing Engines
, Canberra, Australia, Sept. 22–27, Paper No.
ISABE-2019-24435
.https://www.researchgate.net/publication/339443119_Modeling_and_Potentials_of_Flexible_Secondary_Air_Systems_Regarding_Mission_Fuel_Burn_Reduction_and_Blade_Creep_Life
9.
Woelki
,
D.
, and
Peitsch
,
D.
,
2019
, “
A Framework for Applied Component Zooming in Gas Turbines
,” Deutscher Luft- und Raumfahrtkongress, Darmstadt, Germany, Sept. 30–Oct. 2, Paper No.
490174
.https://www.dglr.de/publikationen/2020/490174.pdf
10.
Scanlon
,
T.
,
Wilson
,
P.
,
Priestman
,
G.
, and
Tippetts
,
J.
,
2009
, “
Development of a Novel Flow Control Device for Limiting the Efflux of Air Through a Failed Pipe
,”
ASME
Paper No. GT2009-59662.10.1115/GT2009-59662
11.
Zeller
,
P.
,
2008
, “Effizienzsteigerung von Turboluftstrahltriebwerken durch Optimierung des sekundären Luftsystems”. Ph.D. thesis,
Universität Stuttgart
, Stuttgart, Germany.
12.
Louis
,
J. F.
,
Hiraoka
,
K.
, and
El Masri
,
M. A.
,
1983
, “
A Comparative Study of the Influence of Different Means of Turbine Cooling on Gas Turbine Performance
,”
ASME
Paper No. 83-GT-180.10.1115/83-GT-180
13.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.10.1115/1.1373398
14.
Janawitz
,
J.
,
M
,
J.
, and
Childs
,
C.
,
2015
, “
Heavy-Duty Gas Turbine Operating and Maintenance Considerations
,” GE Power & Water, Atlanta, GA, Report No.
GER-3620M (02/15)
.https://www.ge.com/content/dam/gepower-pgdp/global/en_US/documents/technical/unused%20assets/hdgt-operating-maintenance-considerations-report.pdf
15.
Wu
,
F. E.
,
1994
, “Aero Engine Life Evaluated for Combined Creep and Fatigue, and Extended by Trading-Off Excess Thrust,”
Ph.D. thesis
,
Cranfield University
, Cranfield, UK.http://dspace.lib.cranfield.ac.uk/handle/1826/10517
16.
Kawagishi
,
K.
,
Yeh
,
A.-C.
,
Yokokawa
,
T.
,
Kobayashi
,
T.
,
Koizumi
,
Y.
, and
Harada
,
H.
,
2012
, “
Development of an Oxidation-Resistant High-Strength Sixth-Generation Single-Crystal Superalloy TMS-238
,”
Superalloys
,
9
, pp.
189
195
.https://doi.org/10.1002/9781118516430.ch21
17.
Gurrappa
,
I.
,
Yashwanth
,
I. V. S.
,
Mounika
,
I.
,
Murakami
,
H.
, and
Kuroda
,
S.
,
2015
,
Gas Turbines—Materials, Modeling and Performance: The Importance of Hot Corrosion and Its Effective Prevention for Enhanced Efficiency of Gas Turbines
,
IntechOpen
,
London
.
18.
Lai
,
G. Y.
,
2007
,
High-Temperature Corrosion and Materials Applications
,
ASM International
,
Novelty, OH
.
19.
Stringer
,
J.
,
1998
, “
Coatings in the Electricity Supply Industry: Past, Present, and Opportunities for the Future
,”
Surf. Coat. Technol.
,
108-109
(
10
), pp.
1
9
.10.1016/S0257-8972(98)00642-2
20.
Krishnan
,
V.
,
Kapat
,
J. S.
,
Sohn
,
Y. H.
, and
Desai
,
V. H.
,
2003
, “
Effect of Film Cooling on Low Temperature Hot Corrosion in a Coal Fired Gas Turbine
,”
ASME
Paper No. GT2003-38593.10.1115/GT2003-38593
21.
Deidewig
,
F.
,
Döpelheuer
,
A.
, and
Lecht
,
M.
,
1996
, “
Methods to Assess Aircraft Engine Emissions in Flight
,”
20th Congress of the International Council of the Aeronautical Sciences
, Sorrent, Italy, Sept. 8–13, Paper No. ICAS-96-4.1.2.http://www.icas.org/ICAS_ARCHIVE/ICAS1996/ICAS-96-4.1.2.pdf
22.
Bakken
,
L. E.
, and
Skogly
,
L.
,
1996
, “
Parametric Modeling of Exhaust Gas Emission From Natural Gas Fired Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
118
(
3
), pp.
553
560
.10.1115/1.2816683
23.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1993
, “
Semianalytical Correlations for NOx, CO, and UHC Emissions
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
612
619
.10.1115/1.2906750
24.
Crosa
,
G.
,
Pittaluga
,
F.
,
Trucco Martinengo
,
A.
,
Beltrami
,
F.
,
Torelli
,
A.
, and
Traverso
,
F.
,
1996
, “
Heavy-Duty Gas Turbine Plant Aerothermodynamic Simulation Using Simulink
,”
ASME
Paper No. 96-TA-022.10.1115/96-TA-022
25.
Bozzi
,
L.
, and
D'angelo
,
E.
,
2012
, “
Numerical and Experimental Investigation of Secondary Flows and Influence of Air System Design on Heavy-Duty Gas Turbine Performance
,”
ASME
Paper No. GT2012-68392.10.1115/GT2012-68392
26.
Lechner
,
C.
, and
Seume
,
J.
,
2010
,
Stationäre Gasturbinen
, 2nd ed,
Springer-Verlag
,
Berlin, Heidelberg, Germany
.
27.
Cerri
,
G.
,
Chennaoui
,
L.
,
Giovannelli
,
A.
, and
Mazzoni
,
S.
,
2014
, “
Expander Models for a Generic 300 MW F Class Gas Turbine for IGCC
,”
ASME
Paper No. GT2014-26493.10.1115/GT2014-26493
28.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” NASA, Cincinnati, OH, Report No.
NASA-CR-168289
.https://ntrs.nasa.gov/citations/19900019237
29.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
You do not currently have access to this content.