Abstract

In high bypass ratio engines, the flow exits the interturbine duct (ITD) and enters the low-pressure (LP) turbine. This paper aims to understand the effects of the boundary layer at the exit of ITD on the endwall secondary flows and loss of the first blade row in a low-pressure turbine. From the Navier–Stokes equations, the loss is decomposed into the parts generated by the mean vortex as well as turbulence theoretically. The result of computational fluid dynamics (CFD) shows that the incoming boundary layer from the ITD increases the total pressure loss coefficient by 14% compared to the case with uniform inlet condition. Although the distribution of the secondary vortices is strongly affected by the inlet boundary layer, the loss generated by the mean vortex within the blade passage is hardly affected. The analysis based on the turbulent dissipation shows that the dominant factor leading to the loss increase is the turbulent dissipation downstream of the blade trailing edge (TE) near the hub. The mixing process of the wake and the strong counter-rotating vortex pair (CVP) increases the turbulent dissipation significantly. It is also found that a simplified incoming boundary layer defined by the Prandtl's one-seventh power law can not reproduce the complex effects of the incoming boundary layer from the ITD.

References

References
1.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.10.1146/annurev.fluid.37.061903.175511
2.
Jia
,
L.
,
Zou
,
T.
,
Zhu
,
Y.
, and
Lee
,
C.
,
2018
, “
Rotor Boundary Layer Development With Inlet Guide Vane (IGV) Wake Impingement
,”
Phys. Fluids
,
30
(
4
), p.
040911
.10.1063/1.5013303
3.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
4.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.10.1115/1.3446247
5.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
866
874
.10.1115/1.3230352
6.
Langston
,
L. S.
,
2006
, “
Secondary Flows in Axial Turbines - A Review
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
7.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
8.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
.10.1115/1.4035663
9.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aeosp. Sci.
,
47
(
4
), pp.
249
279
.10.1016/j.paerosci.2011.01.002
10.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2000
, “
Effect of Inlet Conditions on Endwall Secondary Flows
,”
J. Propul. Power
,
16
(
2
), pp.
286
296
.10.2514/2.5567
11.
Sauer
,
H.
,
Schmidt
,
R.
, and
Vogeler
,
K.
,
2012
, “
Influence of Chord Length and Inlet Boundary Layer on the Secondary Losses of Turbine Blades
,”
ASME J. Turbomach.
,
134
(
1
), p.
011015
.10.1115/1.4003244
12.
Giovannini
,
M.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Simoni
,
D.
,
Yepmo
,
V.
, and
Bertini
,
F.
,
2018
, “
Secondary Flows in Low-Pressure Turbines Cascades: Numerical and Experimental Investigation of the Impact of the Inner Part of the Boundary Layer
,”
ASME J. Turbomach.
,
140
(
11
), p.
111002
.10.1115/1.4041378
13.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
14.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
15.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
16.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.10.1115/1.4006294
17.
Lyall
,
M. E.
,
King
,
P. I.
, and
Sondergaard
,
R.
,
2013
, “
Endwall Loss and Mixing Analysis of a High Lift Low Pressure Turbine Cascade
,”
ASME J. Turbomach.
135
(
5
), p.
051006
.10.1115/1.4007801
18.
Vera
,
M.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2006
, “
The Effect of Mach Number on LP Turbine Wake-Blade Interaction,
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
K. C.
Hall
,
R. E.
Kielb
, and
J. P.
Thomas
, eds., Springer, Berlin, pp.
203
216
.10.1007/1-4020-4605-7_16
19.
Dong
,
F.
, and
Zhou
,
C.
,
2020
, “
Streamwise Vortex Transportation and Loss Generation in an Intermediate Turbine Duct
,”
Proc. Inst. Mech. Eng. Part A
, 234(6), pp.
766
776
.10.1177/0957650919879309
20.
Zhou
,
K.
, and
Zhou
,
C.
,
2018
, “
Aerodynamic Interaction Between an Incoming Vortex and Tip Leakage Flow in a Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
11
), p.
111004
.10.1115/1.4041514
21.
Gomez
,
C. A.
, and
Girimaji
,
S. S.
,
2013
, “
Toward Second-Moment Closure Modelling of Compressible Shear Flows
,”
J. Fluid Mech.
,
733
(
25
), pp.
325
369
.10.1017/jfm.2013.428
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
23.
Zhong
,
F.
, and
Zhou
,
C.
,
2017
, “
Effects of Tip Gap Size on the Aerodynamic Performance of a Cavity-Winglet Tip in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
10
), p.
101009
.10.1115/1.4036677
24.
Hu
,
S.
,
Zhou
,
C.
, and
Chen
,
S.
,
2020
, “
Large Eddy Simulation of Secondary Flows in an Ultra-High Lift Low Pressure Turbine Cascade at Various Inlet Incidences
,”
Int. J. Turbo. Jet-Engines
, 37(2), pp.
195
207
.10.1515/tjj-2017-0020
25.
Simpson
,
R. L.
,
2001
, “
Junction Flows
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
415
443
.10.1146/annurev.fluid.33.1.415
26.
Doligalski
,
T. L.
,
Smith
,
C. R.
, and
Walker
,
J. D. A.
,
1994
, “
Vortex Interactions With Walls
,”
Annu. Rev. Fluid Mech.
,
26
(
1
), pp.
573
616
.10.1146/annurev.fl.26.010194.003041
27.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
109
(
2
), pp.
229
236
.10.1115/1.3262089
28.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.