Abstract

An experimental investigation has been performed to study the film-cooling performance of the cylindrical holes embedded in the sine-wave-shaped-trench. The sine-wave-shaped-trench is obtained by changing the trailing edge of the transverse trench into sine-wave shape; the holes are located next to the peaks of the wave. The sine-wave-shaped-trench is expected to get a wider spread of the cooling jet in the spanwise direction. The film-cooling effectiveness, heat-transfer coefficient, and discharge coefficient of the sine-wave-shaped-trench hole configurations with different trench depths (0.75D, 1D) and wave peaks (1D, 2D) are measured by the transient thermal liquid measurement technique. The blowing ratio covers a range from 0.5 to 2.0. The transverse trench hole is investigated as a basis of the comparison. Thermal and hydrodynamic fields are investigated numerically using Reynolds-averaged Navier–Stokes (RANS) simulations with Realizable k–ε turbulence model and enhanced wall treatment. Results show that broadening the wave peak of the sine-wave-shaped-trench improves the spanwise uniformity of the injection. There is a pair of anticounter-rotating vortices formed downstream of the sine-wave-trailing-edge. Increasing the trench depth shows positive effects on the heat-transfer coefficients ratio of the sine-wave-shaped-trench. The discharge coefficients of the sine-wave-shaped-trenches are higher than that of the transverse trench which means the sine-wave shape trench has a lower flow resistance.

References

References
1.
Wang
,
T.
,
Chintalapati
,
S.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2000
, “
Jet Mixing in a Slot
,”
Exp. Therm. Fluid Sci.
,
22
(
1–2
), pp.
1
17
.10.1016/S0894-1777(00)00010-8
2.
Bunker
,
R. S.
,
2002
, “
Film-Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
Paper No. GT-2002-30178. 10.1115/GT-2002-30178
3.
Lu
,
Y.
,
Hasan
,
N.
, and
Ekkad
,
S. V.
,
2005
, “
Film-Cooling From a Row of Holes Embedded in Transverse Slots
,”
ASME
Paper No. GT2005-68598.10.1115/GT2005-68598
4.
Dorrington
,
J. R.
,
Bogard
,
D. G.
, and
Bunker
,
R. S.
,
2007
, “
Film Effectiveness Performance for Coolant Holes Embedded in Various Shallow Trench and Crater Depressions
,”
ASME
Paper No. GT2007-27992.10.1115/GT2007-27992
5.
Waye
,
S. K.
, and
Bogard
,
D. G.
,
2007
, “
High Resolution of Film-Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
ASME J. Turbomach.
,
129
(
2
), pp.
294
302
.10.1115/1.2464141
6.
Lu
,
Y.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2008
, “
Trench Film-Cooling—Effect of Trench Downstream Edge and Hole Spacing
,”
ASME
Paper No. GT2008-50606.10.1115/GT2008-50606
7.
Idowu Oguntade
,
H.
,
E. Andrews
,
G.
,
Burns
,
A. D.
,
B. Ingham
,
D.
, and
Pourkashanian
,
M.
,
2013
, “
Ingham D. B and Pourkashanian M., 2011. “Improved Trench Film-Cooling With Shaped Trench Outlets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021009
.10.1115/1.4006606
8.
Oguntade
,
H. I.
,
Andrews
,
G. E.
, and
Burns
,
A.
,
2014
, “
Ingham D. B and Pourkashanian M., 2014. “Conjugate Heat-Transfer Predictions of Effusion Cooling With Shaped Trench Outlet
,”
ASME
Paper No. GT2014-25257.10.1115/GT2014-25257
9.
Zuniga
,
H. A.
, and
Kapat
,
J. S.
,
2009
, “
Effect of Increasing Pitch-To-Diameter Ratio on the Film-Cooling Effectiveness of Shaped and Cylindrical Holes Embedded in Trenches
,”
ASME
Paper No. GT2009-60080.10.1115/GT2009-60080
10.
Li
,
J.
,
Ren
,
J.
, and
Jiang
,
H.
,
2010
, “
Film-Cooling Performance of the Embedded Holes in Trenches With Compound Angles
,”
ASME Paper No. GT2010-22337.
10.1115/GT2010-22337
11.
Baheri
,
S.
, and
Jubran
,
B. A.
,
2012
, “
The Effect of Turbulence Intensity on Film-Cooling of Gas Turbine Blade From Trenched Shaped Holes
,”
Heat Mass Transfer
,
48
(
5
), pp.
831
840
.10.1007/s00231-011-0938-x
12.
Schreivogel
,
P.
,
Kross
,
B.
, and
Pfitzner
,
M.
,
2014
, “
Study of an Optimized Trench Film-Cooling Configuration Using Scale Adaptive Simulation and Infrared Thermography
,”
ASME
Paper No. GT2014-25144.10.1115/GT2014-25144
13.
Schreivogel
,
P.
, and
Pfitzner
,
M.
,
2016
, “
Heat-Transfer Measurements Downstream of Trenched Film-Cooling Holes Using a Novel Optical Two-Layer Measurement Technique
,”
ASME J. Turbomach.
,
138
(
3
), p.
031003
.10.1115/1.4031919
14.
Vedula
,
R. J.
, and
Metzger
,
D. E.
,
1991
, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat-Transfer Distributions in Three Temperature Convection Situations
,”
ASME
Paper No. 91-GT-345.10.1115/91-GT-345
15.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2003
, “
A Novel Transient Liquid Crystal Technique to Determine Heat-Transfer Coefficient Distributions and Adiabatic Wall Temperature in a Three Temperature Problem
,”
ASME J. Turbomach.
,
125
(
3
), pp.
538
546
.10.1115/1.1575252
16.
Drost
,
U.
,
Bolcs
,
A.
, and
Hoffs
,
A.
,
1997
, “
Utilization of the Transient Liquid Crystal Technique for Film-Cooling Effectiveness and Heat-Transfer Investigations on a Flat Plane and a Turbine Airfoil
,”
ASME
Paper No. 97-GT-026.10.1115/97-GT-026
17.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J. W.
,
1998
, “
Heat-Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs
,”
ASME J. Turbomach.
,
120
(
1
), pp.
63
69
.10.1115/1.2841390
18.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
19.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Effect of Trench Width and Depth on Film-Cooling From Cylindrical Holes Embedded in Trenches
,”
ASME J. Turbomach.
,
131
(
1
), p.
011003
.10.1115/1.2950057
You do not currently have access to this content.