Abstract

The process of ignition in aero-engines raises many practical issues that need to be faced during the design process. Recent experiments and simulations have provided detailed insights into ignition in single-injector configurations and on the light-round sequence in annular combustors. It was shown that large eddy simulation (LES) was able to reliably reproduce the physical phenomena involved in the ignition of both perfectly premixed and liquid spray flames. This study aims at further extending the knowledge on flame propagation during the ignition of annular multiple injector combustors by focusing the attention on the effects of heat losses, which have not been accounted for in numerical calculations before. This problem is examined by developing LESs of the light-round process with a fixed temperature at the solid boundaries. Calculations are carried out for a laboratory-scale annular system. Results are compared in terms of flame shape and light-round duration with available experiments and with an adiabatic LES serving as a reference. Wall heat losses lead to a significant reduction in the flame propagation velocity as observed experimentally. However, the LES underestimates this effect and leads to a globally shorter light-round. To better understand this discrepancy, the study focuses then on the analysis of the near wall region. An a priori analysis underlines the shortcomings associated with the chosen wall law by considering a more advanced wall model that fully accounts for variable thermophysical properties and for the unsteadiness of the boundary layer.

References

References
1.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
2.
Mastorakos
,
E.
,
2017
, “
Forced Ignition of Turbulent Spray Flames
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2367
2383
.10.1016/j.proci.2016.08.044
3.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.10.1016/j.combustflame.2008.02.006
4.
Bourgouin
,
J. F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.10.1016/j.combustflame.2013.02.014
5.
Barré
,
D.
,
Esclapez
,
L.
,
Cordier
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
,
Staffelbach
,
G.
,
Renou
,
B.
,
Vandel
,
A.
,
Gicquel
,
L. Y. M.
, and
Cabot
,
G.
,
2014
, “
Flame Propagation in Aeronautical Swirled Multi-Burners: Experimental and Numerical Investigation
,”
Combust. Flame
,
161
(
9
), pp.
2387
2405
.10.1016/j.combustflame.2014.02.006
6.
Marrero-Santiago
,
J. J.
,
Verdier
,
A. A.
,
Brunet
,
C.
,
Vandel
,
A.
,
Godart
,
G.
,
Cabot
,
G.
,
Boukhalfa
,
M.
, and
Renou
,
B.
,
2018
, “
Experimental Study of Aeronautical Ignition in a Swirled Confined Jet-Spray Burner
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
021502
.10.1115/1.4037752
7.
Machover
,
E.
, and
Mastorakos
,
E.
,
2016
, “
Spark Ignition of Annular Non-Premixed Combustors
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
64
70
.10.1016/j.expthermflusci.2015.09.008
8.
Machover
,
E.
, and
Mastorakos
,
E.
,
2017
, “
Experimental Investigation on Spark Ignition of Annular Premixed Combustors
,”
Combust. Flame
,
178
, pp.
148
157
.10.1016/j.combustflame.2017.01.013
9.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3717
3724
.10.1016/j.proci.2016.08.008
10.
Prieur
,
K.
,
Durox
,
D.
,
Vignat
,
G.
,
Schuller
,
T.
, and
Candel
,
S.
,
2018
, “
Flame and Spray Dynamics During the Light-Round Process in an Annular System Equipped With Multiple Swirl Spray Injectors
,”
ASME
Paper No. GT2018-76840.10.1115/GT2018-76840
11.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Schmitt
,
T.
,
Durox
,
D.
,
Bourgouin
,
J. F.
, and
Candel
,
S.
,
2014
, “
Simulation of the Ignition Process in an Annular Multiple-Injector Combustor and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031501
.10.1115/1.4028265
12.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Riber
,
E.
,
Schmitt
,
T.
,
Cuenot
,
B.
,
Durox
,
D.
, and
Candel
,
S.
,
2015
, “
Large Eddy Simulations of the Ignition Sequence of an Annular Multiple-Injector Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3159
3166
.10.1016/j.proci.2014.07.008
13.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2017
, “
Large Eddy Simulation of Light-Round in an Annular Combustor With Liquid Spray Injection and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021504
.10.1115/1.4037827
14.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2019
, “
Leading Point Behavior During the Ignition of an Annular Combustor With Liquid n-Heptane Injectors
,”
Proc. Combust. Inst.
,
137
(
4
), pp.
5021
5029
.10.1016/j.proci.2018.05.160
15.
Moureau
,
V.
,
Lartigue
,
G.
,
Sommerer
,
Y.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Poinsot
,
T.
,
2005
, “
Numerical Methods for Unsteady Compressible Multi-Component Reacting Flows on Fixed and Moving Grids
,”
J. Comput. Phys.
,
202
(
2
), pp.
710
736
.10.1016/j.jcp.2004.08.003
16.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
17.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
1977
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1503
1515
.10.1063/1.870436
18.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion—Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
19.
Shum-Kivan
,
F.
,
Marrero Santiago
,
J.
,
Verdier
,
A.
,
Riber
,
E.
,
Renou
,
B.
,
Cabot
,
G.
, and
Cuenot
,
B.
,
2017
, “
Experimental and Numerical Analysis of a Turbulent Spray Flame Structure
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2567
2575
.10.1016/j.proci.2016.06.039
20.
Boileau
,
M.
,
Pascaud
,
S.
,
Riber
,
E.
,
Cuenot
,
B.
,
Gicquel
,
L. Y. M.
,
Poinsot
,
T.
, and
Cazalens
,
M.
,
2008
, “
Investigation of Two-Fluid Methods for Large Eddy Simulation of Spray Combustion in Gas Turbines
,”
Flow Turbul. Combust
,
80
(
3
), pp.
291
321
.10.1007/s10494-007-9123-1
21.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
22.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
23.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
24.
Cabrit
,
O.
, and
Nicoud
,
F.
,
2009
, “
Direct Simulations for Wall Modeling of Multicomponent Reacting Compressible Turbulent Flows
,”
Phys. Fluids
,
21
, p.
055108
.10.1063/1.3123528
25.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
26.
Piomelli
,
U.
, and
Balaras
,
E.
,
2002
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
349
374
.10.1146/annurev.fluid.34.082901.144919
27.
Bose
,
S. T.
, and
Park
,
G. I.
,
2018
, “
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
535
561
.10.1146/annurev-fluid-122316-045241
28.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
, 8th ed.,
Springer
,
Berlin
.
29.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are we?
,”
ASME. J. Heat Transfer
,
116
(
2
), pp.
284
295
.10.1115/1.2911398
30.
Cabot
,
W.
, and
Moin
,
P.
,
2000
, “
Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow
,”
Flow Turbul. Combust.
,
63
(
1/4
), pp.
269
291
.10.1023/A:1009958917113
31.
Huang
,
P. G.
,
Coleman
,
G. N.
, and
Bradshaw
,
P.
,
1995
, “
Compressible Turbulent Channel Flows: DNS Results and Modelling
,”
J. Fluid Mech.
,
305
, pp.
185
218
.10.1017/S0022112095004599
32.
Patel
,
A.
,
Peeters
,
J. W. R.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2015
, “
Semi-Local Scaling and Turbulence Modulation in Variable Property Turbulent Channel Flows
,”
Phys. Fluids
,
27
(
9
), p.
095101
.10.1063/1.4929813
33.
Kawai
,
S.
, and
Larsson
,
J.
,
2012
, “
Wall-Modeling in Large Eddy Simulation: Length Scales, Grid Resolution, and Accuracy
,”
Phys. Fluids
,
24
(
1
), p.
015105
.10.1063/1.3678331
34.
Larsson
,
J.
,
Laurence
,
S.
,
Bermejo-Moreno
,
I.
,
Bodart
,
J.
,
Karl
,
S.
, and
Vicquelin
,
R.
,
2015
, “
Incipient Thermal Choking and Stable Shock-Train Formation in the Heat-Release Region of a Scramjet Combustor—Part II: Large Eddy Simulations
,”
Combust. Flame
,
162
(
4
), pp.
907
920
.10.1016/j.combustflame.2014.09.017
35.
Zhang
,
Y. F.
,
Vicquelin
,
R.
,
Gicquel
,
O.
, and
Taine
,
J.
,
2013
, “
A Wall Model for LES Accounting for Radiation Effects
,”
Int. J. Heat Mass Transfer
,
67
, pp.
712
723
.10.1016/j.ijheatmasstransfer.2013.08.071
36.
Poinsot
,
T. J.
,
Haworth
,
D. C.
, and
Bruneaux
,
G.
,
1993
, “
Direct Simulation and Modeling of Flame-Wall Interaction for Premixed Turbulent Combustion
,”
Combust. Flame
,
95
(
1–2
), pp.
118
132
.10.1016/0010-2180(93)90056-9
You do not currently have access to this content.