Abstract

A range of popular hybrid Reynolds-averaged Navier–Stokes -large eddy simulation (RANS-LES) methods are tested for a cavity and two labyrinth seal geometries using an in-house high-order computational fluid dynamics (CFD) code and a commercial CFD code. The models include the standard Spalart–Allmaras (SA) and Menter shear stress transport (SST) versions of delayed detached eddy simulation (DDES) and the Menter scale adaptive simulation (SAS) model. A recently formulated, enhanced, variant of SA-DDES presented in the literature and a new variant using the Menter SST model are also investigated. The latter modify the original definition of the subgrid length scale used in standard DDES based on local vorticity and strain. For all geometries, the meshes are considered to be hybrid RANS-LES adequate. Very low levels of resolved turbulence and quasi-two-dimensional flow fields are observed for the standard DDES and SAS models even for the test cases here that contain obstacles, sharp edges, and swirling flow. Similar findings are observed for both the commercial and in-house high-order CFD codes. For the cavity simulations, when using standard DDES and SAS, there is a significant under prediction of turbulent statistics compared with experimental measurements. The enhanced versions of DDES, on the other hand, show a significant improvement and resolve turbulent content over a wide range of scales. Improved agreement with experimental measurements is also observed for profiles of the vertical velocity component. For the first labyrinth seal geometry swirl velocities are more accurately captured by the enhanced DDES versions. For the second labyrinth seal geometry, the mass flow coefficient prediction using the enhanced models is significantly improved (up to 30%). Standard, industrially available hybrid RANS-LES models, when applied to the present canonical cases can produce little to no resolved turbulent content. The standard SA- and Menter-based DDES models can yield lower levels of eddy viscosity when compared to equivilent steady RANS simulations which means that they are not operating as RANS or LES. It is recommended that hybrid RANS-LES models should be extensively tested for specific flow configurations and that special care is exercised by CFD practitioners when using many of the popular hybrid RANS-LES models that are currently available in commercial CFD packages.

References

References
1.
Jefferson-Loveday
,
R. J.
,
Rao
,
V. N.
,
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2013
, “
High-Order Detached Eddy Simulation, Zonal LES and URANS of Cavity and Labyrinth Seal Flows
,”
Int. J. Numer. Methods Fluids
,
73
, pp.
830
846
.10.1002/fld.3826
2.
Jefferson-Loveday
,
R. J.
,
Tucker
,
P. G.
,
Northall
,
J. D.
, and
Rao
,
V. N.
,
2013
, “
Differential Equation Specification of Integral Turbulence Length Scales
,”
ASME J. Turbomach.
,
135
(
3
), p.
031013
.10.1115/1.4007479
3.
Jefferson-Loveday
,
R. J.
,
2017
, “
Differential Equation-Based Specification of Turbulence Integral Length Scales for Cavity Flows
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062508
.10.1115/1.4035602
4.
Tyacke
,
J.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
,
Rao
,
V. N.
,
Watson
,
R.
,
Naqavi
,
I.
, and
Yang
,
X.
,
2014
, “
Large Eddy Simulation for Turbines: Methodologies, Cost and Future Outlooks
,”
ASME J. Turbomach.
,
136
(
6
), p.
061009
.10.1115/1.4025589
5.
Spalart
,
P. R.
,
1999
, “
Strategies for Turbulence Modelling and Simulations
,”
Fourth International Symposium on Engineering Turbulence Modelling and Measurements
, Ajaccio, Corsica, France, May 24–26, pp.
3
17
.
6.
Menter
,
F. R.
, and
Kuntz
,
M.
,
2002
, “
Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles
,”
Symposium on the Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains
, Monterey, CA, Dec. 2–6, 2004, pp.
339
352
.
7.
Deck
,
S.
,
2012
, “
Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation
,”
Theor. Fluid Dyn.
,
26
(
6
), pp.
523
550
.10.1007/s00162-011-0240-z
8.
Wei
,
M. A.
,
Gao
,
F.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Wang
,
A. J.
,
2016
, “
Numerical Investigation of Intermittent Corner Separation in a Linear Compressor Cascade
,”
ASME
Paper Number GT2016-57311.10.1115/GT2016-57311
9.
Widenhorn
,
A.
,
Noll
,
B.
, and
M
,
A.
,
2009
, “
Numerical Study of a Non-Reacting Turbulent Flow in a Gas Turbine Model Combustor
,”
AIAA
Paper No. 2009-647. 10.2514/6.2009-647
10.
Lin
,
D.
,
Si
,
X.
, and
Yuan
,
X.
,
2016
, “
Delayed Detached-Eddy Simulations of a High-Pressure Turbine Vane
,”
ASME
Paper No. GT2016-56911.10.1115/GT2016-56911
11.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2016
, “
Investigation of Detached Eddy Simulations in Capturing the Effects of Coriolis Forces and Centrifugal Buoyance in Ribbed Ducts
,”
ASME
Paper No. GT2016-56911.
12.
Dietiker
,
J.
, and
Hoffmann
,
K. A.
,
2006
, “
Detached-Eddy-Simulation of Supersonic Jet Flows
,”
AIAA
Paper No. 2006-7812. 10.2514/6.2006-7812
13.
Jefferson-Loveday
,
R. J.
, and
Tucker
,
P. G.
,
2011
, “
Wall-Resolved LES and Zonal LES of Round Jet Impingement Heat Transfer on a Flat Plate
,”
Numer. Heat Transfer Part B—Fundam.
,
59
(
3
), pp.
190
208
.10.1080/10407790.2011.554495
14.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No.
2001
0879
.10.2514/6.2001-879
15.
Shur
,
M. L.
,
Spalart
,
P. R.
, and
Strelets
,
M. K.
,
2016
, “
Jet Noise Computations Based on Enhanced DES Formulations Accelerating the RANS-to-LES Transition in Free Shear Layers
,”
Int. J. Aeroacoust.
,
15
(
6–7
), pp.
595
613
.10.1177/1475472X16659388
16.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2015
, “
An Enhanced Version of DES With Rapid Transition From RANS to LES in Separated Flows
,”
Flow, Turbul. Combust.
,
95
(
4
), pp.
709
737
.10.1007/s10494-015-9618-0
17.
Scotti
,
A.
,
Meneveau
,
C.
, and
Lilly
,
D. K.
,
1993
, “
Generalized Smagorinsky Model for Anisotropic Grids
,”
Phys. Fluids
,
5
(
9
), pp.
2306
2308
.10.1063/1.858537
18.
Chauvet
,
N.
,
Deck
,
S.
, and
Jacquin
,
L.
,
2007
, “
Zonal-Detached-Eddy Simulation of a Controlled Propulsive Jet
,”
AIAA J.
,
45
(
10
), pp.
2458
2473
.10.2514/1.28562
19.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
20.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schutze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the kω Shear Stress Transport Model
,”
Flow Turbul. Combust.
,
88
(
3
), pp.
431
449
.10.1007/s10494-011-9378-4
21.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
, Vol.
4
,
Begell House, Inc.
,
New York
, pp.
625
632
.
22.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions
,”
J. Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
23.
Ansys, Inc.
,
2017
,
Ansys Fluent User's Guide
,
Ansys
,
Canonsburg, PA
.
24.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2002
, “
On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes
,”
J. Comput. Phys.
,
181
(
1
), pp.
155
185
.10.1006/jcph.2002.7117
25.
Pulliam
,
T. H.
, and
Zingg
,
D. W.
,
2014
,
Fundamental Algorithms in Computational Fluid Dynamics
,
Springer
,
New York
.
26.
Ansys, Inc.
,
2017
,
Ansys Fluent Theory Guide
,
Ansys
,
Canonsburg, PA
.
27.
Grace
,
S. M.
,
Dewar
,
W. G.
, and
Wroblewski
,
D. E.
,
2004
, “
Experimental Investigation of the Flow Characteristics Within a Shallow Wall Cavity for Both Laminar and Turbulent Upstream Boundary Layers
,”
Exp. Fluids
,
36
, pp.
791
804
.10.1007/s00348-003-0761-3
28.
Ahuja
,
K. K.
, and
Mendoza
,
J.
,
1995
, “
Effects of Cavity Dimensions, Boundary Layer, and Temperature on Cavity Noise With Emphasis on Benchmark Data to Validate Computational Aeroacoustic Codes
,” NASA Contractor Report, Langley Research Center, Hampton, VA, Report No. NAS1-19061.
29.
Denecke
,
J.
,
Dullenkopf
,
K.
,
Wittig
,
S.
, and
Bauer
,
H. J.
,
2005
, “
Experimental Investigation of the Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2005-68677. 10.1115/GT2005-68677
30.
Piomelli
,
U.
, and
Balaras
,
E.
,
2002
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
349
374
.10.1146/annurev.fluid.34.082901.144919
31.
Davidson
,
L.
, and
Peng
,
S. H.
,
2003
, “
Hybrid LES-RANS: A Combination of a One-Equation SGS Model and a kw Model for Predicting Recirculating Flows
,”
Int. J. Numer. Methods Fluids
,
43
(
9
), pp.
1003
1018
.10.1002/fld.512
32.
Gamal
,
A. J. M.
, and
Vance
,
J. M.
,
2008
, “
Labyrinth Seal Leakage Tests: Tooth Prole, Tooth Thickness, and Eccentricity Eects
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012510
.10.1115/1.2771571
You do not currently have access to this content.