The analysis of intake silencer insertion loss (IL) was conducted using a hybrid numerical method, which combined computational fluid dynamics (CFD) and acoustic finite element method (FEM). First, an experimental test was conducted to obtain the compressor intake noise spectrum under two different conditions: the turbocharger directly connected to the substitution duct and to the intake silencer, respectively. Then, the hybrid numerical method was introduced to predict the intake noise propagation. The compressor unsteady flow was calculated under the two different conditions, the pressure fluctuation on the impeller inlet plane was then extracted as noise source. The noise propagation under two different conditions were obtained. The comparison of numerical and experimental results indicates that the hybrid method used in this paper can predict the IL in different conditions as the IL under three different compressor working conditions was consistent with the experimental values. Furthermore, the noise spectral characteristics and acoustic directivity of compressor intake noise were also discussed.

References

References
1.
Liu
,
G. P.
, and
Pan
,
H. X.
,
2006
, “
Measurement and Analysis of Noise Characteristics for Diesel Engine
,”
IEEE International Conference on Mechatronics
(
ICMECH
), Budapest, Hungary, July 3–5, pp.
1390
1394
.
2.
Abom
,
M.
, and
Kabral
,
R.
,
2014
, “
Turbocharger Noise—Generation and Control
,”
SAE
Technical Paper No. 2014-36-0802.
3.
Raitor
,
T.
, and
Neise
,
W.
,
2008
, “
Sound Generation in Centrifugal Compressors
,”
J. Sound Vib.
,
314
(
3–5
), pp.
738
756
.
4.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
, and
Wade
,
R.
,
2014
, “
Noise at the Mid to High Flow Range of a Turbocharger Compressor
,”
Noise Control Eng. J.
,
62
(
5
), pp.
306
312
.
5.
Sun
,
H.
, and
Lee
,
S.
,
2004
, “
Numerical Prediction of Centrifugal Compressor Noise
,”
J. Sound Vib.
,
269
(
1–2
), pp.
421
430
.
6.
Sun
,
H.
,
Shin
,
H.
, and
Lee
,
S.
,
2006
, “
Analysis and Optimization of Aerodynamic Noise in a Centrifugal Compressor
,”
J. Sound Vib.
,
289
(
4–5
), pp.
999
1018
.
7.
Trochon
,
P. E.
,
2001
, “
A New Type of Silencers for Turbocharger Noise Control
,”
SAE
Technical Paper No. 2001-01-1436.
8.
Lee
,
I.
,
Selamet
,
A.
,
Kim
,
H.
,
Kim
,
T.
, and
Kim
,
J.
,
2009
, “
Design of a Multi-Chamber Silencer for Turbocharger Noise
,”
SAE Int. J. Passenger Cars—Mech. Syst.
,
2
(
1
), pp.
1339
1344
.
9.
Kabral
,
R.
,
Du
,
L.
,
Abom
,
M.
, and
Knutsson
,
M.
,
2014
, “
A Compact Silencer for the Control of Compressor Noise
,”
SAE Int. J. Engines
,
7
(
3
), pp.
1572
1578
.
10.
Tian
,
S.
,
Sheng
,
X.
,
Yang
,
D.
,
Huang
,
S.
, and
Cao
,
X.
,
2014
, “
Design of a Reactive Silencer to Reduce Turbocharger Synchronous Noise Generated From Compressor Pressure Pulsations
,”
21st International Congress on Sound and Vibration
, Beijing, China, July 13–17, Paper No. 595.https://www.researchgate.net/publication/290202908_Design_of_a_reactive_silencer_to_reduce_turbocharger_synchronous_noise_generated_from_compressor_pressure_pulsations/citation/download
11.
Peter
,
D. C.
, and
Phillip
,
B. G.
,
1994
, “
Turbocharger Having Reduced Noise Emission
,” U.S. Pattern No. US005295785A.
12.
Kerr
,
J. D.
,
2003
, “
Air Intake Silencer
,” U.S. Pattern No. US20030150671A1.
13.
Feld
,
H.
,
Mrvely
,
L.
, and
Meyer
,
P.
,
2014
, “Sound Attenuator of an Exhaust-Gas Turbocharger,” U.S. Pattern No. US9228549B2.
14.
Dobrin
,
V.
,
Marvi
,
A. A.
,
Huddleston
,
D. D.
, and
Bozzi
,
L. A.
,
2013
, “Intake System Having a Silencer Device,” U.S. Pattern No. US009175648B2.
15.
Karim
,
A.
,
Lizotte
,
W. B.
,
Miazgowicz
,
D. K.
, and
Zouani
,
A.
,
2016
, “
Turbocharger Compressor Noise Reduction System and Method
,” U.S. Pattern No. US9303561B2.
16.
Young
,
C. I. J.
, and
Crocker
,
M. J.
,
1975
, “
Prediction of Transmission Loss in Mufflers by the Finite Element Method
,”
J. Acoust. Soc. Am.
,
57
(
1
), pp.
144
148
.
17.
Seybert
,
A. F.
, and
Cheng
,
C. Y. R.
,
1987
, “
Application of the Boundary Element Method to Acoustic Cavity Response and Muffler Analysis
,”
ASME J. Vib. Acoust.
,
109
(
1
), pp.
15
21
.
18.
Bilawchuk
,
S.
, and
Fyfe
,
K. R.
,
2003
, “
Comparison and Implementation of the Various Numerical Methods Used for Calculating Transmission Loss in Silencer Systems
,”
Appl. Acoust.
,
64
(
9
), pp.
903
916
.
19.
Ji
,
Z. L.
, and
Selamet
,
A.
,
2000
, “
Boundary Element Analysis of Three-Pass Perforated Duct Mufflers
,”
Noise Control Eng. J.
,
48
(
5
), pp.
151
156
.
20.
Selamet
,
A.
, and
Ji
,
Z. L.
,
2000
, “
Case Study: Acoustic Attenuation Performance of Circular Expansion Chambers With Extended End-Inlet and Side-Outlet
,”
Noise Control Eng. J.
,
48
(
2
), pp.
60
66
.
21.
LMS International
, 2012,
Numerical Acoustics: Theoretical Manual
,
LMS International
,
Leuven, Belgium
.
22.
Selamet
,
A.
,
Kothamasu
,
V.
, and
Novak
,
J. M.
,
2001
, “
Insertion Loss of a Helmholtz Resonator in the Intake System of Internal Combustion Engines: An Experimental and Computational Investigation
,”
Appl. Acoust.
,
62
(
4
), pp.
381
409
.
23.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
,
Wiley
,
New York
.
24.
Kirby
,
R.
,
2001
, “
Simplified Techniques for Predicting the Transmission Loss of a Circular Dissipative Silencer
,”
J. Sound Vib.
,
243
(
3
), pp.
403
426
.
25.
Liu
,
C.
, and
Ji
,
Z. L.
,
2013
, “
Computational Fluid Dynamics—Based Numerical Analysis of Acoustic Attenuation and Flow Resistance Characteristics of Perforated Tube Silencers
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021006
.
26.
Fan
,
W.
, and
Guo
,
L.
,
2016
, “
An Investigation of Acoustics Attenuation Performance of Silencers With Mean Flow Based on Three-Dimensional Numerical Simulation
,”
Shock Vib.
,
2016
(
2
), pp.
1
12
.
27.
Qi
,
D.
,
Mao
,
Y.
,
Liu
,
X.
, and
Yuan
,
M.
,
2009
, “
Experimental Study on the Noise Reduction of an Industrial Forward-Curved Blades Centrifugal Fan
,”
Appl. Acoust.
,
70
(
8
), pp.
1041
1050
.
28.
Ohuchida
,
S.
, and
Tanaka
,
K.
,
2013
, “
Radiated BPF Sound Measurement of Centrifugal Compressor
,”
Chem. Eng. Sci.
,
52
(
2
), pp.
98
104
.
29.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Navarro
,
R.
, and
García-Tíscar
,
J.
,
2015
, “
Acoustics Characterization of Automotive Turbo-Compressors
,”
Int. J. Engine Res.
,
16
(
1
), pp.
31
37
.
30.
ISO,
2013
, “
Reciprocating Internal Combustion Engines—Measurement Method for Exhaust Silencers—Sound Power Level of Exhaust Noise and Insertion Loss Using Sound Pressure and Power Loss Ratio
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 15619
.https://www.iso.org/standard/55443.html
31.
JB/T
,
2015
, “
Reciprocating Internal Combustion Engines—Measuring Method for Noise of Air Cleaners
,” Ministry of Industry and Information Technology of the People's Republic China, Beijing, China, Standard No. JB/T 12332 (in Chinese).
32.
Broatch
,
A.
,
Galindo
,
J.
,
Navarro
,
R.
, and
García-Tíscar
,
J.
,
2014
, “
Methodology for Experimental Validation of a CFD Model for Predicting Noise Generation in Centrifugal Compressors
,”
Int. J. Heat Fluid Flow
,
50
, pp.
134
144
.
33.
Broatch
,
A.
,
Galindo
,
J.
,
Navarro
,
R.
, and
García-Tíscar
,
J.
,
2016
, “
Numerical and Experimental Analysis of Automotive Turbocharger Compressor Aeroacoustics at Different Operating Conditions
,”
Int. J. Heat Fluid Flow
,
61
, pp.
245
255
.
34.
Serrano
,
J.
,
Olmeda
,
P.
,
Arnau
,
F.
,
Reyes-Belmonte
,
M.
, and
Lefebvre
,
A.
,
2013
, “
Importance of Heat Transfer Phenomena in Small Turbocharger for Passenger Car Applications
,”
SAE Int. J. Engines
,
6
(
2
), pp.
716
728
.
35.
Margurg
,
S.
, and
Nolte
,
B.
,
2008
,
Computational Acoustics of Noise Propagation in Fluid—Finite and Boundary Element Methods
,
Springer
, Berlin.
36.
Bose
,
T.
,
2013
,
Aerodynamic Noise: An Introduction for Physicists and Engineers
,
Springer
, Berlin.
37.
Howe
,
W.
,
2015
,
Acoustics and Aerodynamic Sound
,
Cambridge University Press
,
Cambridge, UK
.
38.
Liu
,
C.
,
Cao
,
Y.
,
Zhang
,
W.
,
Ming
,
P.
, and
Liu
,
Y.
,
2019
, “
Numerical and Experimental Investigations of Centrifugal Compressor BPF Noise
,”
Appl. Acoust.
,
150
, pp.
290
301
.
You do not currently have access to this content.