With the engine technology moving toward more challenging (highly dilute and boosted) operation, spark-ignition processes play a key role in determining flame propagation and completeness of the combustion process. On the computational side, there is plenty of spark-ignition models available in literature and validated under conventional, stoichiometric spark ignition (SI) operation. Nevertheless, these models need to be expanded and developed on more physical grounds since at challenging operation they are not truly predictive. This paper reports on the development of a dedicated model for the spark-ignition event at nonquiescent, engine-like conditions, performed in the commercial CFD code converge. The developed methodology leverages previous findings that have expanded the use and improved the accuracy of Eulerian-type energy deposition models. In this work, the Eulerian energy deposition is coupled at every computational time-step with a Lagrangian-type evolution of the spark channel. Typical features such as spark channel elongation, stretch, and attachment to the electrodes are properly described to deliver realistic energy deposition along the channel during the entire ignition process. The numerical results are validated against schlieren images from an optical constant volume chamber and show the improvement in the simulation of the spark channel during the entire ignition event, with respect to the most commonly used energy deposition approach. Further developmental pathways are discussed to provide more physics-based features from the developed ignition model in the future.

References

References
1.
Ikeya
,
K.
,
Takazawa
,
M.
,
Yamada
,
T.
,
Park
,
S.
, and
Tagishi
,
R.
,
2015
, “
Thermal Efficiency Enhancement of a Gasoline Engine
,”
SAE Int. J. Engines
,
8
(
4
), pp.
1579
1586
.
2.
Matsuo
,
S.
,
Ikeda
,
E.
,
Ito
,
Y.
, and
Nishiura
,
H.
,
2016
, “
The New Toyota Inline 4 Cylinder 1.8 L ESTEC 2ZR-FXE Gasoline Engine for Hybrid Car
,”
SAE
Paper No. 2016-01-0684.
3.
Hwang
,
K.
,
Hwang
,
I.
,
Lee
,
H.
,
Park
,
H.
,
Choi
,
H.
,
Lee
,
K.
,
Kim
,
W.
,
Kim
,
H.
,
Han
,
B.
,
Lee
,
J.
,
Shin
,
B.
, and
Chae
,
D.
,
2016
, “
Development of New High-Efficiency Kappa 1.6 L GDI Engine
,”
SAE
Paper No. 2016-01-0667.
4.
Ayala
,
F.
, and
Heywood
,
J.
,
2007
, “
Lean SI Engines: The Role of Combustion Variability in Defining Lean Limits
,”
SAE
Paper No. 2007-24-0030.
5.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T. W.
, and
Som
,
S.
,
2017
, “
Parallel Methodology to Capture Cyclic Variability in Motored Engines
,”
IJER
,
18
(
4
), pp.
366
377
.
6.
Thiele
,
M.
,
Selle
,
S.
,
Riedel
,
U.
,
Warnatz
,
J.
, and
Maas
,
U.
,
2000
, “
Numerical Simulation of Spark Ignition Including Ionization
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1177
1185
.
7.
Yang
,
X.
,
Solomon
,
A.
, and
Kuo
,
T.-W.
,
2012
, “
Ignition and Combustion Simulations of Spray-Guided SIDI Engine Using Arrhenius Combustion With Spark-Energy Deposition Model
,”
SAE
Paper No. 2012-01-0147.
8.
Givler
,
S. D.
,
Raju
,
M.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, et al. .,
2013
, “
Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines Using a Reduced Chemical Mechanism
,”
SAE
Paper No. 2013-01-1098.
9.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1–2
), pp.
1
15
.
10.
Duclos
,
J. M.
, and
Colin
,
O.
,
2001
, “
Arc and Kernel Tracking Ignition Model for 3D Spark-Ignition Engine Calculations
,”
The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines
(COMODIA 2001), Nagoya, Japan, July 1–4, p.
46
.
11.
Dahms
,
R. N.
,
Drake
,
M. C.
,
Fansler
,
T. D.
,
Kuo
,
T.-W.
, and
Peters
,
N.
,
2011
, “
Understanding Ignition Processes in Spray-Guided Gasoline Engines Using High-Speed Imaging and the Extended Spark-Ignition Model SparkCIMM—Part A: Spark Channel Processes and the Turbulent Flame Front Propagation
,”
Combust. Flame
,
158
(
11
), pp.
2229
2244
.
12.
Lucchini
,
T.
,
Cornolti
,
L.
,
Montenegro
,
G.
,
D'Errico
,
G.
, et al. .,
2013
, “
A Comprehensive Model to Predict the Initial Stage of Combustion in SI Engines
,”
SAE
Paper No. 2013-01-1087.
13.
Zhang
,
A.
,
Scarcelli
,
R.
,
Lee
,
S.
,
Wallner
,
T.
, et al. .,
2016
, “
Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model
,”
SAE
Paper No. 2016-01-0609.
14.
Zhu
,
X.
,
Sforza
,
L.
,
Ranadive
,
T.
,
Zhang
,
A.
,
Lee
,
S.-Y.
,
Naber
,
J.
,
Lucchini
,
T.
,
Onorati
,
A.
,
Anbarasu
,
M.
, and
Zeng
,
Y.
,
2016
, “
Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1494
1511
.
15.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2016
, “
CONVERGECFD 2.3.0 Theory Manual
,” Convergent Science, Madison, WI.
16.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “
Gri-Mech 3.0
,” Accessed May 13, 2019, http://www.me.berkeley.edu/gri_mech/
You do not currently have access to this content.