Perforated plates are widely used to attenuate noise emission and as acoustic liners in combustion chambers. In this study, the damping performance of the perforated plate located in the combustor inlet section is experimentally and numerically studied. The primary response of nonpremixed swirl flame under 30–400 Hz acoustic excitation with a 445 mm inlet length occurs at 134 Hz and 210 Hz modes. The perforated plate designed for 210 Hz sound absorption with a 328 mm cavity length and an 8.04% porosity is compared to plates with various cavity lengths and different orifice patterns. The acoustic absorption capability of perforated plates is evaluated by the Luong model and tested in an impedance tube. The acoustic measurements show that the sound absorption performance of each plate is strongly affected by the bias flow velocity and cavity length. The combustion results indicate that the installation of perforated plates at the inlet section has two effects: sound attenuation and redistribution of the pressure mode of the combustor. The acoustic mode analysis further demonstrated that, for damping the nonpremixed flame when the combustion instability is caused by the inlet pressure fluctuation, modification of the inlet acoustic mode shape is more efficient than the sound attenuation.

References

References
1.
Selamet
,
A.
,
Xu
,
M. B.
,
Lee
,
I. J.
, and
Huff
,
N. T.
,
2005
, “
Helmholtz Resonator Lined With Absorbing Material
,”
J. Acoust. Soc. Am.
,
117
(
2
), pp.
725
733
.
2.
Sohn
,
C. H.
, and
Park
,
J. H.
,
2011
, “
A Comparative Study on Acoustic Damping Induced by Half-Wave, Quarter-Wave, and Helmholtz Resonators
,”
Aerosp. Sci. Technol.
,
15
(
8
), pp.
606
614
.
3.
Lörstad
,
D.
,
Pettersson
,
J.
, and
Lindholm
,
A.
,
2009
, “
Emission Reduction and Cooling Improvements Due to the Introduction of Passive Acoustic Damping in an Existing SGT-800 Combustor
,”
ASME
Paper No. GT2009-59313.
4.
Lahiri
,
C.
, and
Bake
,
F.
,
2017
, “
A Review of Bias Flow Liners for Acoustic Damping in Gas Turbine Combustors
,”
J. Sound Vib.
,
400
(
21
), pp.
564
605
.
5.
Ingård
,
U.
,
1953
, “
On the Theory and Design of Acoustic Resonators
,”
J. Acoust. Soc. Am.
,
25
(
6
), pp.
1037
1061
.
6.
Temiz
,
M. A.
,
Arteaga
,
I. L.
,
Efraimsson
,
G.
,
Åbom
,
M.
, and
Hirschberg
,
A.
,
2015
, “
The Influence of Edge Geometry on End-Correction Coefficients in Micro Perforated Plates
,”
J. Acoust. Soc. Am.
,
138
(
6
), pp.
3668
3677
.
7.
Cummings
,
A.
, and
Eversman
,
W.
,
1983
, “
High Amplitude Acoustic Transmission Through Duct Terminations: Theory
,”
J. Sound Vib.
,
91
(
4
), pp.
503
518
.
8.
Bodén
,
H.
,
2013
, “
Acoustic Properties of Perforates Under High Level Multitone Excitation
,”
AIAA
Paper No. 2013–2175.
9.
Kooijman
,
G.
,
Hirschberg
,
A.
, and
Golliard
,
J.
,
2008
, “
Acoustical Response of Orifices Under Grazing Flow: Effect of Boundary Layer Profile and Edge Geometry
,”
J. Sound Vib.
,
315
(
4–5
), pp.
849
874
.
10.
Hughes
,
I. J.
, and
Dowling
,
A. P.
,
1990
, “
The Absorption of Sound by Perforated Linings
,”
J. Fluid Mech.
,
218
(
1
), pp.
299
335
.
11.
Grace
,
S. M.
,
Horan
,
K. P.
, and
Howe
,
M. S.
,
1998
, “
The Influence of Shape on the Rayleigh Conductivity of a Wall Aperture in the Presence of Grazing Flow
,”
J. Fluid Mech.
,
12
(3), pp.
335
351
.
12.
Gaeta
,
R. J.
, and
Ahuja
,
K. K.
,
2001
, “
Effect of Orifice Shape on Acoustic Impedance
,”
AIAA
Paper No. 2001–0662.
13.
Tonon
,
D.
,
Moers
,
E. M. T.
, and
Hirschberg
,
A.
,
2013
, “
Quasi-Steady Acoustic Response of Wall Perforations Subject to a Grazing-Bias Flow Combination
,”
J. Sound Vib.
,
332
(
7
), pp.
1654
1673
.
14.
Chang
,
D.
,
Lu
,
F.
,
Jin
,
W.
, and
Liu
,
B.
,
2018
, “
Low-Frequency Sound Absorptive Properties of Double-Layer Perforated Plate Under Grazing Flow
,”
Appl. Acoust.
,
130
, pp.
115
123
.
15.
Tayong
,
R.
,
2013
, “
On the Holes Interaction and Heterogeneity Distribution Effects on the Acoustic Properties of Air-Cavity Backed Perforated Plates
,”
Appl. Acoust.
,
74
(
12
), pp.
1492
1498
.
16.
Temiz
,
M. A.
,
Tournadre
,
J.
,
Arteaga
,
I. L.
, and
Hirschberg
,
A.
,
2016
, “
Non-Linear Acoustic Transfer Impedance of Micro-Perforated Plates With Circular Orifices
,”
J. Sound Vib.
,
366
(
31
), pp.
418
428
.
17.
Howe
,
M. S.
,
1998
,
Acoustics of Fluid–Structure Interactions
,
Cambridge University Press
,
Cambridge, UK
.
18.
Rayleigh
,
J. W. S.
,
1945
,
The Theory of Sound
,
Dover
,
Mineola, NY
.
19.
Luong
,
T.
,
Howe
,
M. S.
, and
McGowan
,
R. S.
,
2005
, “
On the Rayleigh Conductivity of a Bias-Flow Aperture
,”
J. Fluids Struct.
,
21
(
8
), pp.
769
778
.
20.
Jing
,
X.
, and
Sun
,
X.
,
2000
, “
Effect of Plate Thickness on Impedance of Perforated Plates With Bias Flow
,”
AIAA J.
,
38
(
9
), pp.
1573
1578
.
21.
Jing
,
X.
, and
Sun
,
X.
,
1999
, “
Experimental Investigations of Perforated Liners With Bias Flow
,”
J. Acoust. Soc. Am.
,
106
(
5
), pp.
2436
2441
.
22.
Scarpato
,
A.
,
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2012
, “
Modeling the Damping Properties of Perforated Screens Traversed by a Bias Flow and Backed by a Cavity at Low Strouhal Number
,”
J. Sound Vib.
,
331
(
2
), pp.
276
290
.
23.
Scarpato
,
A.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2013
, “
A Comparison of the Damping Properties of Perforated Plates Backed by a Cavity Operating at Low and High Strouhal Numbers
,”
C. R. Mec.
,
341
(
1–2
), pp.
161
170
.
24.
Bothien
,
M. R.
, and
Wassmer
,
D.
,
2015
, “
Impact of Density Discontinuities on the Resonance Frequency of Helmholtz Resonators
,”
AIAA J.
,
53
(
4
), pp.
877
887
.
25.
Elnady
,
T.
,
Bodén
,
H.
, and
Kontio
,
T.
,
2004
, “
Impedance of SDOF Perforated Liners at High Temperatures
,”
AIAA
Paper No. 2004-2482.
26.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
27.
Richards
,
G. A.
,
Straub
,
D. L.
, and
Robey
,
E. H.
,
2003
, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propul. Power
,
19
(
5
), pp.
795
810
.
28.
Lawn
,
C.
,
2016
, “
The Acoustic Impedance of Perforated Plates Under Various Flow Conditions Relating to Combustion Chamber Liners
,”
Appl. Acoust.
,
106
, pp.
144
154
.
29.
Lahiri
,
C.
,
Enghardt
,
L.
,
Bake
,
F.
,
Sadig
,
S.
, and
Gerendás
,
M.
,
2011
, “
Establishment of a High Quality Database for the Acoustic Modelling of Perforated Liners
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
091503
.
30.
Bellucci
,
V.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
Numerical and Experimental Study of Acoustic Damping Generated by Perforated Screens
,”
AIAA J.
,
42
(
8
), pp.
1543
1549
.
31.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.
32.
Andreini
,
A.
,
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
, and
Peschiulli
,
A.
,
2011
, “
Assessment of Numerical Tools for the Evaluation of the Acoustic Impedance of Multi-Perforated Plates
,”
ASME
Paper No. GT2011-46303.
33.
Scarinci
,
T.
,
2005
, “
Combustion Instability and Its Passive Control: Rolls-Royce Trent 60 Dry Low Emissions Aero-Derivative Engine Experience
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
T.
Lieuwen
and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
65
88
.
34.
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2009
, “
Damping Combustion Instabilities With Perforates at the Premixer Inlet of a Swirled Burner
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2917
2924
.
35.
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2009
, “
Passive Control of the Inlet Acoustic Boundary of a Swirled Burner at High Amplitude Combustion Instabilities
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p.
051502
.
36.
Oh
,
S.
,
Shin
,
Y.
, and
Kim
,
Y.
,
2016
, “
Stabilization Effects of Perforated Plates on the Combustion Instability in a Lean Premixed Combustor
,”
Appl. Therm. Eng.
,
107
(
25
), pp.
508
515
.
37.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041504
.
38.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
39.
Zhou
,
H.
,
Huang
,
Y.
, and
Meng
,
S.
,
2017
, “
Response of Non-Premixed Swirl-Stabilized Flames to Acoustic Excitation and Jet in Cross-Flow Perturbations
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
124
135
.
40.
Zhou
,
H.
,
Meng
,
S.
,
Tao
,
C.
, and
Liu
,
Z.
,
2019
, “
Study of Burner Geometry Effects on Non-Premixed Flame Response Under Acoustic Excitation
,”
J. Low Freq. Noise Vib. Act. Control
,
38
(
1
), pp.
3
17
.
41.
Howe
,
M. S.
,
1979
, “
On the Theory of Unsteady High Reynolds Number Flow Through a Circular Aperture
,”
Proc. R. Soc. London, Ser. A
,
366
(
1725
), pp.
205
223
.
42.
Zhou
,
H.
,
Meng
,
S.
,
Tao
,
C.
, and
Liu
,
Z.
,
2019
, “
Low-Frequency Sound Absorptive Properties of Dual Perforated Plates Under Bias Flow
,”
Appl. Acoust.
,
146
, pp.
420
428
.
43.
Chung
,
J. Y.
, and
Blaser
,
D. A.
,
1980
, “
Transfer Function Method of Measuring In-Duct Acoustic Properties—Part I: Theory
,”
J. Acoust. Soc. Am.
,
68
(
3
), pp.
907
913
.
44.
Chung
,
J. Y.
, and
Blaser
,
D. A.
,
1980
, “
Transfer Function Method of Measuring in-Duct Acoustic Properties—Part II: Experiment
,”
J. Acoust. Soc. Am.
,
68
(
3
), pp.
914
921
.
45.
Stathopoulos, A., Saad, Y., and Wu, K.,
1997
, “
Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods
,”
SIAM J. Sci. Comput.
,
19
(1), pp. 227–245.
46.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2009
, “
Dynamic Phase Converter for Passive Control of Combustion Instabilities
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3163
3170
.
You do not currently have access to this content.