Turbine attachments in the aero-engine are generally subjected to combined high and low cycle fatigue (CCF) loadings, i.e., low cycle fatigue (LCF) loading due to centrifugal and thermal loading stresses superimposed to the aerodynamically induced high cycle fatigue (HCF) loading. The primary focus of this study is to predict the crack growth life for the actual full-scale turbine attachment through experimentally examining the crack growth behavior under CCF loading at elevated temperature. The crack closure effect was first investigated by using the corner-notched (CN) specimen cut from the turbine attachment since the stress state of CN specimen is more similar to turbine attachment than compact tension (CT) specimen. Employing digital image correlation (DIC) technique, the level of crack closure of CN specimen was clarified under different stress ratios (R) for LCF loading. Afterward, a CCF crack growth model for the full-scale turbine attachment was proposed, which takes the crack closure effect, time-independent crack increment, and transient vibrational analysis into account. In order to verify the proposed method, a Ferris wheel system was established to conduct CCF test on the full-scale turbine attachment at elevated temperature. This study provides an effective methodology to predict the fatigue crack growth (FCG) life of full-scale turbine attachment under CCF loading.

References

References
1.
Hu
,
D.
,
Meng
,
F.
,
Liu
,
H.
,
Song
,
J.
, and
Wang
,
R.
,
2016
, “
Experimental Investigation of Fatigue Crack Growth Behavior of GH2036 Under Combined High and Low Cycle Fatigue
,”
Int. J. Fatigue.
,
85
, pp.
1
10
.
2.
Padula
,
S. A.
,
II
,
Shyam
,
A.
,
Ritchie
,
R. O.
, and
Milligan
,
W. W.
,
1999
, “
High Frequency Fatigue Crack Propagation Behavior of a Nickel-Base Turbine Disk Alloy
,”
Int. J. Fatigue
,
21
(
7
), pp.
725
731
.
3.
Hu
,
D.
,
Yang
,
Q.
,
Liu
,
H.
,
Mao
,
J.
,
Meng
,
F.
,
Wang
,
Y.
,
Ren
,
M.
, and
Wang
,
R.
,
2017
, “
Crack Closure Effect and Crack Growth Behavior in GH2036 Superalloy Plates Under Combined High and Low Cycle Fatigue
,”
Int. J. Fatigue
,
95
, pp.
90
103
.
4.
He
,
D.
,
Lin
,
Y. C.
,
Chen
,
M.
, and
Li
,
L.
,
2017
, “
Kinetics Equations and Microstructural Evolution During Metadynamic Recrystallization in a Nickel-Based Superalloy With δ Phase
,”
J. Alloy Compd.
,
690
, pp.
971
978
.
5.
Lin
,
Y. C.
,
Deng
,
J.
,
Jiang
,
Y.
,
Wen
,
D.
, and
Liu
,
G.
,
2014
, “
Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy
,”
Mater Des.
,
55
, pp.
949
957
.
6.
Lin
,
Y. C.
,
Chen
,
X. M.
,
Chen
,
M. S.
,
Zhou
,
Y.
,
Wen
,
D. X.
, and
He
,
D. G.
,
2016
, “
A New Method to Predict the Metadynamic Recrystallization Behavior in a Typical Nickel-Based Superalloy
,”
Appl. Phys. A
,
122
(
6
), p.
601
.
7.
Deng
,
G.-J.
,
Tu
,
S.-T.
,
Zhang
,
X.-C.
,
Wang
,
J.
,
Zhang
,
C.-C.
,
Qian
,
X.-Y.
, and
Wang
,
Y.-N.
,
2016
, “
Small Fatigue Crack Initiation and Growth Mechanisms of Nickel-Based Superalloy GH4169 at 650 °C in Air
,”
Eng. Fract. Mech.
,
153
, pp.
35
49
.
8.
Wolf
,
E.
,
1970
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
,
2
(
1
), pp.
37
45
.
9.
de Matos
,
P. F. P.
, and
Nowell
,
D.
,
2009
, “
Experimental and Numerical Investigation of Thickness Effects in Plasticity-Induced Fatigue Crack Closure
,”
Int. J. Fatigue
,
31
(
11–12
), pp.
1795
1804
.
10.
Shankar
,
K.
, and
Wu
,
W.
,
2002
, “
Effect of Welding and Weld Repair on Crack Propagation Behaviour in Aluminium Alloy 5083 Plates
,”
Mater Des.
,
23
(
2
), pp.
201
208
.
11.
Newman
,
J.
,
1981
, “
A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading
,”
STP748-EB Methods and Models for Predicting Fatigue Crack Growth Under Random Loading
,
ASTM International
,
West Conshohocken, PA
, pp.
53
84
.
12.
Liu
,
H.
,
Shang
,
D.
,
Liu
,
J.
, and
Guo
,
Z.
,
2015
, “
Fatigue Life Prediction Based on Crack Closure for 6156 Al-Alloy Laser Welded Joints Under Variable Amplitude Loading
,”
Int. J. Fatigue
,
72
, pp.
11
18
.
13.
McClung
,
R.
,
Thacker
,
B.
, and
Roy
,
S.
,
1991
, “
Finite Element Visualization of Fatigue Crack Closure in Plane Stress and Plane Strain
,”
Int. J. Fract.
,
50
(
1
), pp.
27
49
.
14.
Powell
,
B. E.
,
1995
, “
Fatigue Crack Growth Behaviour of Two Contrasting Titanium Alloys
,”
Int. J. Fatigue
,
17
(
3
), pp.
221
227
.
15.
Powell
,
B. E.
,
Hawkyard
,
M.
, and
Grabowski
,
L.
,
1997
, “
The Growth of Cracks in Ti-6Al-4V Plate Under Combined High and Low Cycle Fatigue
,”
Int. J. Fatigue
,
19
(
93
), pp.
167
176
.
16.
Schweizer
,
C.
,
Seifert
,
T.
,
Nieweg
,
B.
,
von Hartrott
,
P.
, and
Riedel
,
H.
,
2011
, “
Mechanisms and Modelling of Fatigue Crack Growth Under Combined Low and High Cycle Fatigue Loading
,”
Int. J. Fatigue
,
33
(
2
), pp.
194
202
.
17.
Hou
,
N. X.
,
Wen
,
Z. X.
,
Yu
,
Q. M.
, and
Yue
,
Z. F.
,
2009
, “
Application of a Combined High and Low Cycle Fatigue Life Model on Life Prediction of SC Blade
,”
Int. J. Fatigue
,
31
(
4
), pp.
616
619
.
18.
Zhu
,
S.
,
Yue
,
P.
,
Yu
,
Z.
, and
Wang
,
Q.
,
2017
, “
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades
,”
Materials
,
10
(
7
), pp.
698
712
.
19.
Oakley
,
S. Y.
, and
Nowell
,
D.
,
2007
, “
Prediction of the Combined High- and Low-Cycle Fatigue Performance of Gas Turbine Blades After Foreign Object Damage
,”
Int. J. Fatigue
,
29
(
1
), pp.
69
80
.
20.
Patriarca
,
L.
,
Foletti
,
S.
,
Beretta
,
S.
,
Parodi
,
S.
, and
Riva
,
A.
,
2017
, “
Crack Propagation Under Combined Cycle Fatigue for a Precipitation Hardened Steel
,”
Procedia Struct. Integr.
,
7
, pp.
214
221
.
21.
Holycross
,
C. M.
,
Shen
,
M. H. H.
,
Scott-Emuakpor
,
O. E.
, and
George
,
T. J.
,
2013
, “
Energy-Based Fatigue Life Prediction Combined Low Cycle High Cycle Fatigue
,”
ASME
Paper No. GT2013-95785.
22.
Zheng
,
X.
,
Engler-Pinto
,
C. C.
,
Su
,
X.
,
Cui
,
H.
, and
Wen
,
W.
,
2013
, “
Modeling of Fatigue Damage Under Superimposed High-Cycle and Low-Cycle Fatigue Loading for a Cast Aluminum Alloy
,”
Mater. Sci. Eng. A.
,
560
, pp.
792
801
.
23.
Karunananda
,
K.
,
Ohga
,
M.
,
Dissanayake
,
R.
, and
Siriwardane
,
S.
,
2010
, “
A Combined High and Low Cycle Fatigue Model to Estimate Life of Steel Bridges
,”
J. Eng. Technol. Res.
,
2
(
8
), pp.
144
160
.https://academicjournals.org/journal/JETR/article-abstract/A1A08A310629
24.
Chondros
,
T. G.
, and
Dimarogonas
,
A. D.
,
1979
, “
Identification of Cracks in Circular Plates Welded at the Contour
,”
ASME
Paper No. 79-DET-106.
25.
Rizos
,
P. F.
,
Aspragathos
,
N.
, and
Dimarogonas
,
A. D.
,
1990
, “
Identification of Crack Location and Magnitude in a Cantilever Beam From the Vibration Modes
,”
J. Sound Vib.
,
138
(
3
), pp.
381
388
.
26.
Dentsoras
,
A. J.
, and
Kouvaritakis
,
E. P.
,
1995
, “
Effects of Vibration Frequency on Fatigue Crack Propagation of a Polymer at Resonance
,”
Eng. Fract. Mech.
,
50
(
4
), pp.
467
473
.
27.
Wauer
,
J.
,
1990
, “
On the Dynamics of Cracked Rotors: A Literature Survey
,”
ASME Appl. Mech. Rev.
,
43
(
1
), pp.
13
17
.
28.
Dimarogonas
,
A. D.
,
Paipetis
,
S. A.
, and
Chondros
,
T. G.
,
2013
,
Variational Formulation of Consistent: Continuous Cracked Structural Members. Analytical Methods in Rotor Dynamics
,
2nd ed.
,
Springer
,
Dordrecht, The Netherlands
, pp.
221
250
.
29.
ASTM,
2013
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,” ASTM International, West Conshohocken, PA, Standard No. ASTM E647-13.
30.
Newman
,
J. C.
, and
Raju
,
I. S.
,
1983
, “
Stress Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies Subjected to Tension and Bending Loads
,” National Aeronautics and Space Administration, Langley Research Center, Springfield, VA, NASA Technical Memorandum 85793.
31.
Pickard
,
A. C.
,
1986
,
The Application of 3-Dimensional Finite Element Methods to Fracture Mechanics and Fatigue Life Prediction
,
Chameleon Press
,
London
.
32.
Vasco-Olmo
,
J. M.
,
James
,
M. N.
,
Christopher
,
C. J.
,
Patterson
,
E. A.
, and
Díaz
,
F. A.
,
2016
, “
Assessment of Crack Tip Plastic Zone Size and Shape and Its Influence on Crack Tip Shielding
,”
Fatigue Fract. Eng. Mater. Struct.
,
39
(
8
), pp.
969
981
.
33.
Wang
,
R.
, and
Nie
,
J.
,
1997
, “
A New Experimental Method to Study Combined Fatigue of Actual Turbine Disk Mortise Teeth at Elevated Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
969
972
.
34.
Hu
,
D.
, and
Wang
,
R.
,
2013
, “
Combined Fatigue Experiments on Full Scale Turbine Components
,”
Aircr. Eng. Aerosp. Technol.
,
85
(
1
), pp.
4
9
.
35.
Liu
,
H.
,
Hu
,
D.
,
Wang
,
R.
,
Shen
,
X.
, and
Fan
,
J.
,
2014
, “
Fatigue Crack Growth of Multiple Load Path Structure Under Combined Fatigue Loading—Part II: Experiment Study
,”
ASME
Paper No. GT2014-26681.
36.
Zitounis
,
V.
,
2003
, “
Fatigue Crack Growth Rates Under Variable Amplitude Load Spectra Containing Tensile Underloads
,”
Ph.D. thesis
,
Cranfield University
,
Cranfield, UK
.https://dspace.lib.cranfield.ac.uk/handle/1826/105
37.
Hu
,
D.
,
Wei
,
J.
,
Liu
,
H.
,
Si
,
W.
, and
Wang
,
R.
,
2014
, “
Fatigue Crack Growth of Multiple Load Path Structure Under Combined Fatigue Loading—Part I: Numerical Simulation
,”
ASME
Paper No. GT2014-25719.
You do not currently have access to this content.