Plasma actuators may be successfully employed as virtual control surfaces, located at the trailing edge (TE) of blades, both on the pressure and on the suction side, to control the aeroelastic response of a compressor cascade. Actuators generate an induced flow against the direction of the freestream. As a result, actuating on the pressure side yields an increase in lift and nose down pitching moment, whereas the opposite is obtained by operating on the suction side. A properly phased alternate pressure/suction side actuation allows to reduce vibration and to delay the flutter onset. This paper presents the development of a linear frequency domain reduced order model (ROM) for lift and pitching moment of the plasma-equipped cascade. Specifically, an equivalent thin airfoil model is used as a physically consistent basis for the model. Modifications in the geometry of the thin airfoil are generated to account for the effective chord and camber changes induced by the plasma actuators, as well as for the effects of the neighboring blades. The model reproduces and predicts correctly the mean and the unsteady loads, along with the aerodynamic damping on the plasma equipped cascade. The relationship between the parameters of the ROM with the flow physics is highlighted.

References

References
1.
Tiedemann
,
C.
,
Heinrich
,
A.
, and
Peitsch
,
D.
,
2012
, “
A New Linear High Speed Compressor Stator Cascade for Active Flow Control Investigations
,”
AIAA
Paper No. 2012-3251.
2.
Matejka
,
M.
,
Popelka
,
L.
,
Safarik
,
P.
, and
Nozicka
,
J.
,
2008
, “
Influence of Active Methods of Flow Control on Compressor Blade Cascade Flow
,”
ASME
Paper No. GT2008-51109.
3.
Trávníček
,
Z.
,
Cyrus
,
V.
,
Šimurda
,
D.
,
Luxa
,
M.
,
Lukač
,
J.
, and
Kordik
,
J.
,
2013
, “
Experimental Investigation of the Compressor Cascade Under an Active Flow Control
,”
EPJ Web Conferences
, 45, p. 01086.
4.
Hammer
,
S.
,
Phan
,
D. T.
,
Peter
,
J.
,
Werder
,
T.
,
Meyer
,
R.
,
Liebich
,
R.
, and
Thamsen
,
P. U.
,
2014
, “
Active Flow Control by Adaptive Blade Systems in Periodic Unsteady Flow Conditions
,” Active Flow and Combustion Control 2014, Springer, pp. 281–297.
5.
Suman
,
A.
,
Fortini
,
A.
,
Aldi
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2015
, “
A Shape Memory Alloy-Based Morphing Axial Fan Blade—Part II: Blade Shape and CFD Analyses
,”
ASME
Paper
No. GT2015-42700.
6.
Suman
,
A.
,
Fortini
,
A.
,
Aldi
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2015
, “
A Shape Memory Alloy-Based Morphing Axial Fan Blade—Part I: Blade Structure Design and Functional Characterization
,”
ASME
Paper No. GT2015-42695.
7.
Monner
,
H. P.
,
Huxdorf
,
O.
,
Riemenschneider
,
J.
, and
Keimer
,
R.
,
2015
, “
Design and Manufacturing of Morphing Fan Blades for Experimental Investigations in a Cascaded Wind Tunnel
,”
AIAA
Paper No. 2015-0790.
8.
Phan
,
D. T.
,
Springer
,
P.
, and
Liebich
,
R.
,
2017
, “
Numerical Investigation of an Elastomer-Piezo-Adaptive Blade for Active Flow Control of a Nonsteady Flow Field Using Fluid-Structure Interaction Simulations
,”
ASME J. Turbomach.
,
139
(
9
), p.
091004
.
9.
Lemire
,
S.
, and
Vo
,
H.
,
2011
, “
Reduction of Fan and Compressor Wake Defect Using Plasma Actuation for Tonal Noise Reduction
,”
ASME J. Turbomach.
,
133
(
1
), p.
011017
.
10.
De Giorgi
,
M. G.
,
Pescini
,
E.
,
Marra
,
F.
, and
Ficarella
,
A.
,
2014
, “
Experimental and Numerical Analysis of a Micro Plasma Actuator for Active Flow Control in Turbomachinery
,”
ASME
Paper No. GT2014-25337.
11.
Ashrafi
,
F.
,
Michaud
,
M.
, and
Vo
,
H.
,
2015
, “
Delay of Rotating Stall in Compressors Using Plasma Actuators
,”
ASME
Paper No. GT2015-42559.
12.
Sun
,
X.
,
Jing
,
X.
, and
Zhao
,
H.
,
2001
, “
Control of Blade Flutter by Smart-Casing Treatment
,”
J. Propul. Power
,
17
(
2
), pp.
248
255
.
13.
Lu
,
P.
,
Pan
,
D.
, and
Yu
,
Y.
,
2002
, “
Acoustic Flutter Control of Three-Dimensional Transonic Rotor Flow
,”
J. Propul. Power
,
18
(
5
), pp.
1003
1011
.
14.
Rey
,
G.
,
Banaszuk
,
A.
, and
Gysling
,
D.
,
2011
, “
Active Control of Flutter in Turbomachinery Using Off Blade Actuators Sensors: Experimental Results
,” ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 6–10 June 2011, Vancouver, BC, Canada,
American Society of Mechanical Engineers
,
New York
, pp.
1429
1437
.
15.
Banaszuk
,
A.
,
Gysling
,
D.
, and
Rey
,
G.
,
2002
, “
Active Control of Flutter in Turbomachinery Using Off Blade Actuators and Sensors—Part I: Modeling for Control
,”
IFAC Proc. Vol.
,
35
(
1
), pp.
271
276
.
16.
Banaszuk
,
A.
,
Rey
,
G.
, and
Gysling
,
D.
,
2002
, “
Active Control of Flutter in Turbomachinery Using Off Blade Actuators Sensors—Part II: Control Algorithm
,”
41st IEEE Conference on Decision and Control
(
CDC
), Dec. 10–13, Las Vegas, NV, pp.
3704
3709
.
17.
Angelucci
,
R. J.
,
Baker
,
J. R.
, and
Capece
,
V. R.
,
2004
, “
A Study on Active Vibration Control for Stator Vanes in a Research Compressor
,”
AIAA
Paper No. 2004-3752.
18.
Motta
,
V.
,
Malzacher
,
L.
, and
Peitsch
,
D.
,
2017
, “
Numerical Investigation of Virtual Control Surfaces for Vibration Control on Compressor Blades
,”
International Forum on Aeroelasticity and Structural Dynamics
,
June 25–28
, Como, Italy, Paper No. IFASD-2017-137.
19.
Motta
,
V.
,
Malzacher
,
L.
,
Neumann
,
P.
, and
Peitsch
,
D.
,
2017
, “
Numerical Assessment of Virtual Control Surfaces for Compressor Blades
,”
AIAA
Paper No. 2017-3909.
20.
Malzacher
,
L.
,
Geist
,
S.
,
Peitsch
,
D.
, and
Hennings
,
H.
,
2016
, “
A Low Speed Compressor Test Rig for Flutter Investigations
,”
ASME
Paper No. GT2016-57960.
21.
Motta
,
V.
, and
Quaranta
,
G.
,
2015
, “
Linear Reduced-Order Model for Unsteady Aerodynamics of an L-Shaped Gurney Flap
,”
J. Aircr.
,
52
(
6
), pp.
1887
1904
.
22.
Belz
,
J.
,
May
,
M.
, and
Siemann
,
J.
,
Seume
,
J. R.
,
Voigt
,
C.
,
Böhmer
,
H.
, and
Grüber
,
B.
, 2013, “
Excited Blade Vibration for Aeroelastic Investigations of a Rotating Blisk Using Piezo-Electric Macro Fiber Composites
,”
ASME
Paper No. GT2013-95735.
23.
Iwrey
,
B. M.
,
2016
, “
Gas Turbine Engine With Rotor Blade Clearance Flow Control
,” Patent No. US20160177769A1.
24.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.
25.
Carta
,
F. O.
,
1982
, “
An Experimental Investigation of Gapwise Periodicity and Unsteady Aerodynamic Response in an Oscillating Cascade
,” National Aeronautics and Space Administration, Washington, DC, Report No. 3523.
26.
Sachs
,
W.
,
1990
, “
Windkanal Für Instationäre Gitter (WiG), Messstrecke Für Instationäre Gitter (MiG)
,” Phase 1: Bau und InbetriebnahmeWindkanal für instationäre Gitter (WiG), DLR, Cologne, Germany, Technical Report No. 232-90.
27.
Hennings
,
H.
,
1997
, “
Flutter Investigations on a Finite Linear 2D Compressor Cascade in a Wind Tunnel in Incompressible Flow
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
28.
Whitehead
,
D. S.
,
1960
, “
Force and Moment Coefficients for Vibrating Aerofoils in Cascade
,” Aeronautical Research Council, London, Reports No. 3254.
29.
Platzer
,
M. F.
, and
Carta
,
F. O.
,
1987
, “
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines
,” National Aeronautics and Space Administration, Washington, DC, Report No. AGARD 298.
30.
Motta
,
V.
, and
Quaranta
,
G.
,
2016
, “
A Comparative Assessment of Vibration Control Capabilities of a L-Shaped Gurney Flap
,”
Aeronaut. J.
,
120
(
1233
), pp.
1812
1831
.
31.
Keerthi
,
M. C.
,
Shubham
,
S.
, and
Kushari
,
A.
,
2017
, “
Aerodynamic Influence of Oscillating Adjacent Airfoils in a Linear Compressor Cascade
,”
AIAA J.
,
55
(
12
), pp.
4113
4126
.
32.
Carta
,
F. O.
,
1983
, “
Unsteady Aerodynamics and Gapwise Periodicity of Oscillating Cascaded Airfoils
,”
J. Eng. Power
,
105
(
3
), pp.
565
574
.
33.
Küssner
,
H.
, and
Schwarz
,
L.
,
1941
, “
The Oscillating Wing With Aerodynamically Balanced Elevator
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. 991.
34.
Fung
,
Y.
,
1955
,
Theory of Aeroelasticity
,
Wiley
,
New York
.
35.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1984
, “
A Linearized Unsteady Aerodynamic Analysis for Transonic Cascades
,”
J. Eng. Power
,
149
(
2
), pp.
403
429
.
36.
Leishman
,
J. G.
,
2006
,
Principle of Helicopter Aerodynamics
,
Cambridge University Press
,
New York
.
37.
Theodorsen
,
T.
,
1935
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. 496.
38.
Motta
,
V.
,
Guardone
,
A.
, and
Quaranta
,
G.
,
2015
, “
Influence of Airfoil Thickness on Unsteady Aerodynamic Loads on Pitching Airfoils
,”
J. Fluid Mech.
,
774
, pp.
460
487
.
39.
Liu
,
T.
, and
Montefort
,
J.
,
2007
, “
Thin-Airfoil Theoretical Interpretation for Gurney Flap Lift Enhancement
,”
J. Aircr.
,
44
(
2
), pp. 667–671.
40.
Katz
,
J.
, and
Plotkin
,
A.
,
2010
,
Low-Speed Aerodynamics
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.