Free piston linear engine alternators (FPLEA) may be designed following several different baseline configurations. Common designs include a translator that carries permanent magnets, with either one piston attached to one end of the translator, or a piston at each end of the translator. The single cylinder engine requires a reversing force from a spring so that it can operate, whereas, the dual cylinder version can operate without a spring. However, inclusion of stiff springs would serve to raise the operating frequency and reduces the cycle-to-cycle variations in a dual cylinder version. A matlab/simulink numerical model with translator rod dynamics and in-cylinder thermodynamics was employed to predict the overall performance and efficiency of a FPLEA. This numerical model allowed comparison of different FPLEA configurations for a variety of design variables. First, a dual cylinder FPLEA design was considered where the spring constant was varied, changing the frequency of operation and the motion of the translator. The simulation results showed that without springs the motion was far from sinusoidal, and low in frequency and power, whereas the presence of stiff springs in the system strongly dictated nearly sinusoidal motion and high power at high frequency. Effects of other parameters such as stroke and bore were also examined. Finally, the same tests were carried out for a single cylinder FPLEA design. The simulation results showed that the dual cylinder engine produced twice the electrical power output with higher efficiency than the single cylinder engine for the same cylinder geometry.

References

References
1.
Atkinson
,
C. M.
,
Petreanu
,
S.
,
Clark
,
N. N.
,
Atkinson
,
R. J.
,
McDaniel
,
T. I.
,
Nandkumar
,
S.
, and
Famouri
,
P.
,
1999
, “
Numerical Simulation of a Two-Stroke Linear Engine-Alternator Combination
,”
SAE
Paper No. 1999-01-0921.
2.
Bade
,
M.
,
Clark
,
N. N.
,
Musho
,
T.
, and
Famouri
,
P.
,
2018
, “
Piston Rings Friction Comparison in a Free Piston and Conventional Crankshaft Engines
,”
ASME
Paper No. ICEF2018-9774.
3.
Jia
,
B.
,
Smallbone
,
A.
,
Zuo
,
Z.
,
Feng
,
H.
, and
Roskilly
,
A. P.
,
2016
, “
Design and Simulation of a Two-or Four-Stroke Free-Piston Engine Generator for Range Extender Applications
,”
Energy Convers. Manage.
,
111
, pp.
289
298
.
4.
Kosaka
,
H.
,
Akita
,
T.
,
Moriya
,
K.
,
Goto
,
S.
,
Hotta
,
Y.
,
Umeno
,
T.
, and
Nakakita
,
K.
,
2014
, “
Development of Free Piston Engine Linear Generator System Part 1-Investigation of Fundamental Characteristics
,”
SAE
Paper No. 2014-01-1203.
5.
Robinson
,
M. C.
, and
Clark
,
N. N.
,
2015
, “
Fundamental Explorations of Spring-Varied, Free Piston Linear Engine Devices
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
101502
.
6.
Mikalsen
,
R.
, and
Roskilly
,
A. P.
,
2007
, “
A Review of Free-Piston Engine History and Applications
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2339
2352
.
7.
Farmer
,
H. O.
,
1947
, “
Free-Piston Compressor-Engines
,”
Proc. Inst. Mech. Eng.
,
156
(
1
), pp.
253
271
.
8.
Pateras
,
P. R.
,
1928
, “
Motor-Compressor Apparatus
,” U.S. Patent No.
1,657,641
.
9.
Pateras
,
P. R.
,
1941
, “
Motor Compressor of the Free Piston Type
,” U.S. Patent No.
2,241,957
.
10.
Toth-Nagy
,
C.
, and
Clark
,
N. N.
,
2005
, “
The Linear Engine in 2004
,”
SAE
Paper No. 2005-01-2140.
11.
Tikkanen
,
S.
,
Herranen
,
M.
,
Savela
,
R.
, and
Vilenius
,
M.
,
1999
, “
Simulation of a Hydraulic Free Piston Engine: A Dual Piston Case
,”
Sixth Scandinavian International Conference on Fluid Power
,
Tampere, Finland
,
May 26–28
, pp.
339
349
.
12.
Zhu
,
Y.
,
Wang
,
Y.
,
Zhen
,
X.
,
Guan
,
S.
,
Wang
,
J.
,
Wu
,
Y.
,
Chen
,
Y.
, and
Yin
,
S.
,
2014
, “
The Control of an Opposed Hydraulic Free Piston Engine
,”
Appl. Energy
,
126
, pp.
213
220
.
13.
Subramanian
,
J.
,
Heiskell
,
G.
,
Mahmudzadeh
,
F.
, and
Famouri
,
P.
,
2017
, “
Study of Radial and Axial Magnets for Linear Alternator—Free Piston Engine System
,”
North American Power Symposium
(
NAPS
),
Morgantown, WV
,
Sept. 17–19
, pp.
1
6
.
14.
Mikalsen
,
R.
, and
Roskilly
,
A. P.
,
2008
, “
The Design and Simulation of a Two-Stroke Free-Piston Compression Ignition Engine for Electrical Power Generation
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
589
600
.
15.
Tian
,
C. L.
,
Feng
,
H. H.
, and
Zuo
,
Z. X.
,
2012
, “
Oscillation Characteristic of Single Free Piston Engine Generator
,”
Adv. Mater. Res.
,
383–390
, pp.
1873
1878
.
16.
Bade
,
M.
,
Clark
,
N. N.
,
Famouri
,
P.
, and
Guggilapu
,
P. D.
,
2018
, “
Translator Dynamics and Performance Comparison on One and Two Cylinder Free Piston Engines
,”
ASME
Paper No. IMECE2018-88689.
17.
Chiang
,
C. J.
,
Yang
,
J. L.
,
Lan
,
S. Y.
,
Shei
,
T. W.
,
Chiang
,
W. S.
, and
Chen
,
B. L.
,
2011
, “
Dynamic Modeling of SI/HCCI Free-Piston Engine Generators
,”
Sixth IEEE Conference on Industrial Electronics and Applications
(
ICIEA
),
Beijing, China
,
June 21–23
, pp.
1615
1620
.
18.
Robinson
,
M. C.
, and
Clark
,
N. N.
,
2016
, “
Study on the Use of Springs in a Dual Free Piston Engine Alternator
,”
SAE
Paper No. 2016-01-2233.
19.
Tikkanen
,
S.
,
Lammila
,
M.
,
Herranen
,
M.
, and
Vilenius
,
M.
,
2000
, “
First Cycles of the Dual Hydraulic Free Piston Engine
,”
SAE
Paper No. 2000-01-2546.
20.
Clark
,
N.
,
Nandkumar
,
S.
, and
Famouri
,
P.
, and
1998
, “
Fundamental Analysis of a Linear Two-Cylinder Internal Combustion Engine
,”
SAE
Paper No. 982692.
21.
Toth Nagy
,
C.
,
2004
, “
Linear Engine Development for Series Hybrid Electric Vehicles
,”
Ph.D. dissertation
, West Virginia University, Morgantown, WV.
22.
Aichlmayr
,
H. T.
,
2002
, “
Design Considerations, Modeling, and Analysis of Micro-Homogeneous Charge Compression Ignition Combustion Free-Piston Engines
,”
Ph.D. dissertation
, University of Minnesota, Twin cities, MN.
23.
Achten
,
P. A. J.
,
1994
, “
A Review of Free Piston Engine Concepts
,”
SAE
Paper No. 941776.
24.
Hibi
,
A.
, and
Ito
,
T.
,
2004
, “
Fundamental Test Results of a Hydraulic Free Piston Internal Combustion Engine
,”
Proc. Inst. Mech. Eng., Part D
,
218
(
10
), pp.
1149
1157
.
25.
Bade
,
M.
,
Clark
,
N. N.
,
Robinson
,
M. C.
, and
Famouri
,
P.
,
2018
, “
Parametric Investigation of Combustion and Heat Transfer Characteristics of Oscillating Linear Engine Alternator
,”
J. Combust.
,
2018
, p.
2907572
.
26.
Robinson
,
M. C.
,
2015
, “
Analysis and Optimization of a Dual Free Piston, Spring Assisted, Linear Engine Generator
,” Ph.D. dissertation, West Virginia University, Morgantown, WV.
27.
Bade
,
M.
,
Clark
,
N. N.
,
Famouri
,
P.
,
Guggilapu
,
P. D.
,
Darzi
,
M.
, and
Johnson
,
D.
,
2019
, “
Sensitivity Analysis and Control Methodology for Linear Engine Alternator
,”
SAE
Paper No. 2019-01-0230.
You do not currently have access to this content.