The present study investigates various measures to reduce pressure rise rates (PRRs) in a residual-affected homogeneous charge compression ignition (HCCI) engine. At the same time, the impact of those measures on efficiency and emissions is assessed. Experimental research was performed on a single cylinder engine equipped with a fully flexible valve train mechanism and direct gasoline injection. The HCCI combustion mode with exhaust gas trapping was realized using negative valve overlap (NVO) and fuel reforming, achieved via the injection of a portion of fuel during exhaust recompression. Three measures are investigated for the PRR control under the same reference operating conditions, namely: (i) variable intake and exhaust valve timing, (ii) boost pressure adjustment, and (iii) split fuel injection to control the amount of fuel injected for reforming. Variable exhaust valve timing enabled control of the amount of trapped residuals, and thus of the compression temperature. The reduction in the amount of trapped residuals, at elevated engine load, delays auto-ignition, which results in a simultaneous reduction of pressure rise rates and nitrogen oxides emissions. The effects of intake valve timing are much more complex because they include the variability in the amount of intake air, the thermodynamic compression ratio, as well as the in-cylinder fluid flow. It was found, however, that both early and late intake valve openings (IVOs) delay auto-ignition and prolong combustion. Additionally, the reduction of the amount of fuel injected during exhaust recompression further delays combustion and reduces combustion rates. Intake pressure reduction has by far the largest effect on peak pressure reduction yet is connected with excessive NOX emissions. The research successfully identifies air-path and injection techniques, which allow for the control of combustion rates and emissions under elevated load regime.

References

References
1.
Lavy
,
J.
,
Dabadie
,
J.-C.
,
Angelberger
,
C.
,
Duret
,
P.
,
Willand
,
J.
,
Juretzka
,
A.
,
Schäflein
,
J.
,
Ma
,
T.
,
Lendresse
,
Y.
,
Satre
,
A.
,
Schulz
,
C.
,
Krämer
,
H.
,
Zhao
,
H.
, and
Damiano
,
L.
,
2000
, “
Innovative Ultra-Low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: The 4-SPACE Project
,”
SAE
Paper No. 2000-01-1837.
2.
Li
,
J.
,
Zhao
,
H.
,
Ladommatos
,
N.
, and
Ma
,
T.
,
2001
, “
Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine
,”
SAE
Paper No. 2001-01-3608.
3.
Koopmans
,
L.
,
Ström
,
H.
,
Lundgren
,
S.
, and
Backlund
,
O.
,
2003
, “
Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine
,”
SAE
Paper No. 2003-01-0753.
4.
Milovanovic
,
N.
,
Chen
,
R.
, and
Turner
,
J.
,
2010
, “
Influence of the Variable Valve Timing Strategy on the Control of a Homogeneous Charge Compression (HCCI) Engine
,”
SAE
Paper No. 2004-01-1899.
5.
Mikulski
,
M.
,
Balakrishnan
,
P. R.
,
Doosje
,
E.
, and
Bekdemir
,
C.
,
2018
, “
Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine
,”
SAE
Paper No. 2018-01-0254.
6.
García Valladolid
,
P.
,
Tunestål
,
P.
,
Monsalve-Serrano
,
J.
,
García
,
A.
, and
Hyvönen
,
J.
,
2017
, “
Impact of Diesel Pilot Distribution on the Ignition Process of a Dual Fuel Medium Speed Marine Engine
,”
Energy Convers. Manage.
,
149
, pp.
192
205
.
7.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.
8.
Kulzer
,
A.
,
Nier
,
T.
, and
Karrelmeyer
,
R.
,
2011
, “
A Thermodynamic Study on Boosted HCCI: Experimental Results
,”
SAE
Paper No. 2011-01-0905.
9.
Saxena
,
S.
, and
Bedoya
,
I. D.
,
2013
, “
Fundamental Phenomena Affecting Low Temperature Combustion and HCCI Engines, High Load Limits and Strategies for Extending These Limits
,”
Prog. Energy Combust. Sci.
,
39
(
5
), pp.
457
488
.
10.
Nevin
,
R. M.
,
Sun
,
Y.
,
Gonzalez
,
D. M.
, and
Reitz
,
R. D.
,
2010
, “
PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine
,”
SAE
Paper No. 2007-01-0903.
11.
Kwon
,
O. S.
,
Jeong
,
D. W.
,
Lim
,
O. T.
, and
Iida
,
N.
,
2009
, “
The Research About Thermal Stratification Effect on Pressure Rise Rate in Supercharged HCCI Engine Based on Numerical Analysis
,”
SAE
Paper No. 2009-32-0141.
12.
Mikulski
,
M.
,
Wierzbicki
,
S.
, and
Pietak
,
A.
,
2015
, “
The Multi-Phase, Zero-Dimensional, Computational Model of a Multi-Fuel CI Engine Fueled With Gaseous Fuel With Divided Injection of Liquid Fuel
,”
Ekspl. Niezawodnosc Maint. Reliab.
,
17
(
1
), pp.
42
48
.
13.
Mikulski
,
M.
, and
Bekdemir
,
C.
,
2017
, “
Understanding the Role of Low Reactivity Fuel Stratification in a Dual Fuel RCCI Engine—A Simulation Study
,”
Appl. Energy
,
191
, pp.
689
708
.
14.
Hunicz
,
J.
,
2014
, “
An Experimental Study of Negative Valve Overlap Injection Effects and Their Impact on Combustion in a Gasoline HCCI Engine
,”
Fuel
,
117
(
Part A
), pp.
236
250
.
15.
Ekoto
,
I. W.
,
Wolk
,
B. M.
,
Northrop
,
W. F.
,
Hansen
,
N.
, and
Moshammer
,
K.
,
2017
, “
Tailoring Charge Reactivity Using in-Cylinder Generated Reformate for Gasoline Compression Ignition Strategies
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
122801
.
16.
Kulzer
,
A.
,
Lejsek
,
D.
, and
Nier
,
T.
,
2010
, “
A Thermodynamic Study on Boosted HCCI: Motivation, Analysis and Potential
,”
SAE Int. J. Engines
,
3
(
1
), pp.
733
749
.
17.
Dec
,
J. E.
, and
Yang
,
Y.
,
2010
, “
Boosted HCCI for High Power Without Engine Knock and With Ultra-Low NOx Emissions—Using Conventional Gasoline
,”
SAE Int. J. Engines
,
3
(
1
), pp.
750
767
.
18.
Yun
,
H.
,
Wermuth
,
N.
, and
Najt
,
P.
,
2011
, “
High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1190
1201
.
19.
Yap
,
D.
,
Wyszynski
,
M. L.
,
Megaritis
,
A.
, and
Xu
,
H.
,
2005
, “
Applying Boosting to Gasoline HCCI Operation With Residual Gas Trapping
,”
SAE
Paper No. 2005-01-2121.
20.
Canakci
,
M.
,
2012
, “
Combustion Characteristics of a DI-HCCI Gasoline Engine Running at Different Boost Pressures
,”
Fuel
,
96
, pp.
546
555
.
21.
Scaringe
,
R.
,
Wildman
,
C.
, and
Cheng
,
W. K.
,
2010
, “
On the High Load Limit of Boosted Gasoline HCCI Engine Operating in NVO Mode
,”
SAE Int. J. Engines
,
3
(
1
), pp.
35
45
.
22.
Shingne
,
P. S.
,
Middleton
,
R. J.
,
Borgnakke
,
C.
, and
Martz
,
J. B.
,
2019
, “
The Effects of Boost Pressure on Stratification and Burn Duration of Gasoline Homogeneous Charge Compression Ignition Combustion
,”
Int. J. Engine Res.
,
20
(
3
), pp.
359
377
.
23.
Dec
,
J. E.
,
Yang
,
Y.
, and
Dronniou
,
N.
,
2011
, “
Boosted HCCI—Controlling Pressure-Rise Rates for Performance Improvements Using Partial Fuel Stratification With Conventional Gasoline
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1169
1189
.
24.
Turkcan
,
A.
,
Ozsezen
,
A. N.
,
Canakci
,
M.
,
Coskun
,
G.
,
Soyhan
,
H. S.
, and
Demir
,
U.
,
2015
, “
An Experimental and Modeling Study to Investigate Effects of Two-Stage Direct Injection Variations on HCCI Combustion
,”
Combust. Sci. Technol.
,
187
(
4
), pp.
642
658
.
25.
Hunicz
,
J.
,
Geca
,
M. S.
,
Kordos
,
P.
, and
Komsta
,
H.
,
2015
, “
An Experimental Study on a Boosted Gasoline HCCI Engine Under Different Direct Fuel Injection Strategies
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
151
163
.
26.
Hunicz
,
J.
,
Tmar
,
A.
, and
Krzaczek
,
P.
,
2017
, “
Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines
,”
Energies
,
10
(
12
), p.
2172
.
27.
Yang
,
D-B.
,
Wang
,
Z.
,
Wang
,
J. X.
, and
Shuai
,
S-J.
,
2011
, “
Experimental Study of Fuel Stratification for HCCI High Load Extension
,”
Appl. Energy
,
88
(
9
), pp.
2949
2954
.
28.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effect of Diluent Composition on Homogeneous Charge Compression Ignition Auto-Ignition and Combustion Duration
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3019
3026
.
29.
Urushihara
,
T.
,
Hiraya
,
K.
,
Kakuhou
,
A.
, and
Itoh
,
T.
,
2003
, “
Expansion of HCCI Operating Region by the Combination of Direct Fuel Injection, Negative Valve Overlap and Internal Fuel Reformation
,”
SAE
Paper No. 2003-01-0749.
30.
Koopmans
,
L.
,
Ogink
,
R.
, and
Denbratt
,
I.
,
2003
, “
Direct Gasoline Injection in the Negative Valve Overlap of a Homogeneous Charge Compression Ignition Engine
,”
SAE
Paper No. 2003-01-1854.
31.
Yu
,
W.
,
Xie
,
H.
,
Chen
,
T.
,
Li
,
L.
,
Song
,
K.
, and
Zhao
,
H.
,
2012
, “
Effects of Active Species in Residual Gas on Auto-Ignition in a HCCI Gasoline Engine
,”
SAE
Paper No. 2012-01-1115.
32.
Xie
,
H.
,
Lu
,
J.
,
Chen
,
T.
,
Li
,
L.
,
Li
,
C.
, and
Zhao
,
H.
,
2014
, “
Chemical Effects of the Incomplete-Oxidation Products in Residual Gas on the Gasoline HCCI Auto-Ignition
,”
Combust. Sci. Technol.
,
186
(
3
), pp.
273
296
.
33.
Puranam
,
S. V.
, and
Steeper
,
R. R.
,
2012
, “
The Effect of Acetylene on ISO-Octane Combustion in an HCCI Engine With NVO
,”
SAE Int. J. Engines
,
5
(
4
), pp.
1551
1560
.
34.
Wolk
,
B.
,
Ekoto
,
I.
,
Northrop
,
W. F.
,
Moshammer
,
K.
, and
Hansen
,
N.
,
2016
, “
Detailed Speciation and Reactivity Characterization of Fuel-Specific in-Cylinder Reforming Products and the Associated Impact on Engine Performance
,”
Fuel
,
185
, pp.
341
361
.
35.
Makkapati
,
S.
, and
Curtis
,
E. W.
,
2014
, “
Boosted HCCI—Experimental Observations in a Single Cylinder Engine
,”
SAE
Paper No. 2014-01-1277.
36.
Bharath
,
A. N.
,
Kalva
,
N.
,
Reitz
,
R. D.
, and
Rutland
,
C. J.
,
2014
, “
Use of Early Exhaust Valve Opening to Improve Combustion Efficiency and Catalyst Effectiveness in a Multi-Cylinder RCCI Engine System: A Simulation Study
,”
ASME
Paper No. ICEF2014-5534.
37.
Bharath
,
A. N.
,
Yang
,
Y.
,
Reitz
,
R. D.
, and
Rutland
,
C.
,
2015
, “
Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine
,”
SAE
Paper No. 2015-01-0843.
38.
Hunicz
,
J.
,
2016
, “
An Experimental Study Into the Chemical Effects of Direct Gasoline Injection Into Retained Residuals in a Homogeneous Charge Compression Ignition Engine
,”
Int. J. Engine Res.
,
17
(
10
), pp.
1031
1044
.
39.
Liu
,
M.-B.
,
He
,
B.- Q.
, and
Zhao
,
H.
,
2015
, “
Effect of Air Dilution and Effective Compression Ratio on the Combustion Characteristics of a HCCI (Homogeneous Charge Compression Ignition) Engine Fuelled With n-Butanol
,”
Energy
,
85
, pp.
296
303
.
You do not currently have access to this content.