We report herein a computational study to characterize the effect of oxygenation on polycyclic aromatic hydrocarbons (PAHs) and soot emissions in ethylene diffusion flames at pressures 1–8 atm. Laminar oxygenated flames are established in a counterflow configuration by using N2 diluted fuel stream along with O2-enriched oxidizer stream such that the stoichiometric mixture fraction (ζst) is varied, but the adiabatic flame temperature is not materially changed. Simulations are performed using a validated fuel chemistry model and a detailed soot model. The primary objective is to enhance the fundamental understanding of PAHs and soot formation in oxygenated flames at elevated pressures. At a given pressure, as the level of oxygenation (ζst) is increased, we observe a significant reduction in PAHs (benzene and pyrene) and consequently in soot formation. On the other hand, at a fixed ζst, as pressure is increased, it leads to increased PAHs formation and thus higher soot emission. Both soot number density and soot volume fraction increase with pressure. The reaction path analysis indicates that at higher pressures, the C2/C4 path becomes more significant for benzene formation compared to the propargyl recombination path. Results further indicate that the effectiveness of oxygenation in reducing the formation of pyrene and soot becomes less pronounced at higher pressures. In contrast, the effect of pressure on pyrene and soot formation becomes more pronounced at higher oxygenation levels. The behavior can be explained by examining the flame structure and hydrodynamics effects at different pressure and oxygenation levels.

References

References
1.
Kennedy
,
I. M.
,
2007
, “
The Health Effects of Combustion Generated Aerosols
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2557
2770
.
2.
Karataş
,
A. E.
, and
Gülder
,
Ö. L.
,
2012
, “
Soot Formation in High Pressure Laminar Diffusion Flames
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
818
845
.
3.
Charest
,
M. R. J.
,
Joo
,
H. I.
,
Gülder
,
Ö. L.
, and
Groth
,
C. P. T.
,
2011
, “
Experimental and Numerical Study of Soot Formation in Laminar Ethylene Diffusion Flames at Elevated Pressures From 10 to 35 atm
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
549
557
.
4.
Liu
,
F.
,
Karataş
,
A. E.
,
Gülder
,
Ö. L.
, and
Gu
,
M.
,
2015
, “
Numerical and Experimental Study of the Influence of CO2 and N2 Dilution on Soot Formation in Laminar Co-Flow C2H4/Air Diffusion Flames at Pressures Between 5 and 20 atm
,”
Combust. Flame
,
162
(
5
), pp.
2231
2247
.
5.
Bönig
,
M.
,
Feldermann
,
C. R.
, and
Wagner
,
H. G.
,
1990
, “
Soot Formation in Premixed C2H4 Flat Flames at Elevated Pressures
,”
Combust. Inst.
,
3
, pp.
1581
1587
.
6.
Lee
,
W.
, and
Na
,
Y. D.
,
2000
, “
Soot Study in Laminar Diffusion Flames at Elevated Pressures Using Two Color Pyrometry and Abel Inversion
,”
JSME Int. J., Ser. B
,
43
(
4
), pp.
550
555
.
7.
Liu
,
F.
,
Thomson
,
K. A.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2006
, “
Numerical and Experimental Study of an Axisymmetric Coflow Laminar Methane-Air Diffusion Flame at Pressures Between 5 and 40 atm
,”
Combust. Flame
,
146
(
3
), pp.
456
471
.
8.
McCrain
,
L. L.
, and
Roberts
,
W. L.
,
2005
, “
Measurements of Soot Volume Field in Laminar Diffusion Flames at Elevated Pressures
,”
Combust. Flame
,
140
(
1–2
), pp.
60
69
.
9.
Carbone
,
F.
,
Gleason
,
K.
, and
Gomez
,
A.
,
2017
, “
Pressure Effects on Incipiently Sooting Partially Premixed Counterflow Flames of Ethylene
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1395
1402
.
10.
Amin
,
H. M. F.
, and
Roberts
,
W. L.
,
2017
, “
Soot Measurements by Two Angle Scattering and Extinction in an N2 Diluted Ethylene/Air Counterflow Diffusion Flame From 2 to 5 atm
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
861
869
.
11.
Desjardins
,
P.
,
Pitsch
,
H.
,
Malhotra
,
R.
,
Kirby
,
S. R.
, and
Boehman
,
A. L.
,
2008
, “
Structural Group Analysis for Soot Reduction Tendency of Oxygenated Fuels
,”
Combust. Flame
,
154
, pp.
191
205
.
12.
Seepana
,
S.
, and
Jayanti
,
S.
,
2012
, “
Flame Structure Investigations of Oxy-Fuel Combustion
,”
Fuel
,
93
, pp.
52
58
.
13.
Salamanca
,
M.
,
Sirignano
,
M.
,
Commodo
,
M.
,
Minutolo
,
P.
, and
D'Anna
,
A.
,
2012
, “
The Effect of Ethanol on the Particle Size Distributions in Ethylene Premixed Flames
,”
Exp. Therm. Fluid Sci.
,
43
, pp.
71
75
.
14.
Du
,
J.
,
1995
, “
The Effect of Flame Structure on Soot-Particle Inception in Diffusion Flames
,”
Combust. Flame
,
100
(
3
), pp.
367
375
.
15.
Kalvakala
,
K. C.
,
Katta
,
V. R.
, and
Aggarwal
,
S. K.
,
2018
, “
Effects of Oxygen-Enrichment and Fuel Unsaturation on Soot and NOx Emissions in Ethylene, Propane and Propene Flames
,”
Combust. Flame
,
187
, pp.
217
229
.
16.
Reaction Design
,
2015
, “
CHEMKIN-PRO 15141
,” Reaction Design, San Diego, CA.
17.
Puri
,
I. K.
, and
Seshadri
,
K.
,
1986
, “
Extinction of Diffusion Flames Burning Diluted Methane and Diluted Propane in Diluted Air
,”
Combust. Flame
,
65
(
2
), pp.
137
150
.
18.
Ranzi
,
E.
,
Dente
,
M.
,
Goldaniga
,
A.
,
Bozzano
,
G.
, and
Faravelli
,
T.
,
2001
, “
Lumping Procedures in Detailed Kinetic Modeling of Gasification, Pyrolysis, Partial Oxidation and Combustion of Hydrocarbon Mixtures
,”
Prog. Energy Combust. Sci.
,
27
, pp.
99
139
.
19.
Fu
,
X.
,
Han
,
X.
,
Brezinsky
,
K.
, and
Aggarwal
,
S.
,
2013
, “
Effect of Fuel Molecular Structure and Premixing on Soot Emissions From n-Heptane and 1-Heptene Flames
,”
Energy Fuels
,
27
(
10
), pp.
6262
6272
.
20.
Mehta
,
R. S.
,
Haworth
,
D. C.
, and
Modest
,
M. F.
,
2009
, “
An Assessment of Gas Phase Reaction Mechanisms and Soot Models for Laminar Atmospheric Pressure Ethylene Air Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1327
1334
.
21.
Berta
,
P.
,
Puri
,
I. K.
, and
Aggarwal
,
S. K.
,
2005
, “
Structure of Partially Premixed n-Heptane-Air Counterflow Flames
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
447
453
.
22.
Berta
,
P.
,
Aggarwal
,
S.
, and
Puri
,
I.
,
2006
, “
An Experimental and Numerical Investigation of n-Heptane/Air Counterflow Partially Premixed Flames and Emission of NOx and PAH Species
,”
Combust. Flame
,
145
(
4
), pp.
740
764
.
23.
Richter
,
H.
, and
Howard
,
J. B.
,
2000
, “
Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
565
608
.
24.
Prabhu
,
S.
,
Arias
,
P. G.
,
Lee
,
B. J.
,
Im
,
H. G.
,
Wang
,
Y.
,
Gao
,
Y.
,
Park
,
S.
,
Mani Sarathy
,
S.
,
Lu
,
T.
, and
Chung
,
S. H.
,
2016
, “
A Computational Study of Ethylene-Air Sooting Flames: Effects of Large Polycyclic Aromatic Hydrocarbons
,”
Combust. Flame
,
163
, pp.
427
436
.
25.
Skeen
,
S. A.
,
Yablonsky
,
G.
, and,
Axelbaum
,
R. L.
,
2010
, “
Characteristics of Non-Premixed Oxygen-Enhanced Combustion—Part II: Flame Structure Effects on Soot Precursor Kinetics Resulting in Soot-Free Flames
,”
Combust. Flame
,
157
(
9
), pp.
1745
1752
.
You do not currently have access to this content.