The vapor mass fraction distribution of the multicomponent surrogate of diesel and biodiesel fuel is studied using multicomponent evaporation model at engine-relevant conditions. The numerical model is validated with experimental liquid tip penetration and vapor penetration for diesel and biodiesel. The vapor distribution for a multicomponent surrogate is significantly different than that of single-component fuel. The tetradecane, single-component surrogate for diesel has different vapor mass distribution unlike in multicomponent diesel fuel. The spatial mass fraction distribution profile of biodiesel is found to be the function of volatility differential of the pure components and their proportion in the composition. The vapor mass fraction distribution for biodiesel of palm and soybean is found to be similar to that of their single-component surrogate due to comparable volatility of components of these biodiesels. However, methyl laurate in coconut biodiesel has volatility differential with other components and also has a significant share of 40% to 50% in the coconut biodiesel composition. The change in percentage of methyl laurate in coconut composition is found to have strong impact on vapor distribution. The vapor mass fraction distribution is observed to be affected by the change in the biodiesel composition specifically volatile component.

References

References
1.
Payri
,
R.
,
Salvador
,
F.
,
Gimeno
,
J.
, and
Soare
,
V.
,
2005
, “
Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder Air Density and Pressure Conditions
,”
J. Mech. Sci. Technol.
,
19
(
11
), pp.
2040
2052
.
2.
Som
,
S.
,
Longman
,
D.
,
Ramírez
,
A.
, and
Aggarwal
,
S.
,
2010
, “
A Comparison of Injector Flow and Spray Characteristics of Biodiesel With Petrodiesel
,”
Fuel
,
89
(
12
), pp.
4014
4024
.
3.
Park
,
S. H.
,
Kim
,
H. J.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
Experimental and Numerical Analysis of Spray-Atomization Characteristics of Biodiesel Fuel in Various Fuel and Ambient Temperatures Conditions
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
960
970
.
4.
Jarrahbashi
,
D.
,
Kim
,
S.
, and
Genzale
,
C. L.
,
2017
, “
Simulation of Combustion Recession After End-of-Injection at Diesel Engine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102804
.
5.
Mohan
,
B.
,
Yang
,
W.
, and
Yu
,
W.
,
2014
, “
Effect of Internal Nozzle Flow and Thermo-Physical Properties on Spray Characteristics of Methyl Esters
,”
Appl. Energy
,
129
, pp.
123
134
.
6.
Nerva
,
J. G.
,
Genzale
,
C. L.
,
Kook
,
S.
,
García-Oliver
,
J. M.
, and
Pickett
,
L. M.
,
2013
, “
Fundamental Spray and Combustion Measurements of Soy Methyl-Ester Biodiesel
,”
Int. J. Engine Res.
,
14
(
4
), pp.
373
390
.
7.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Cheng
,
X.
,
Gan
,
S.
,
Lucchini
,
T.
, and
D'Errico
,
G.
,
2012
, “
Development of Thermophysical and Transport Properties for the CFD Simulations of In-Cylinder Biodiesel Spray Combustion
,”
Energy Fuels
,
26
(
8
), pp.
4857
4870
.
8.
Lanjekar
,
R.
, and
Deshmukh
,
D.
,
2017
, “
Biofuel Pure Component Spray Characteristics at Engine-Relevant Conditions
,”
Energy Fuels
,
31
(
9
), pp.
9438
9445
.
9.
Gopalakrishnan
,
V.
, and
Abraham
,
J.
,
2002
, “
An Investigation of Ignition Behavior in Diesel Sprays
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
641
646
.
10.
Aggarwal
,
S. K.
,
1989
, “
Ignition Behavior of a Multicomponent Fuel Spray
,”
Combust. Flame
,
76
(
1
), pp.
5
15
.
11.
Aggarwal
,
S.
, and
Mongia
,
H.
,
2002
, “
Multicomponent and High-Pressure Effects on Droplet Vaporization
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
248
255
.
12.
Bittle
,
J.
,
Knight
,
B.
, and
Jacobs
,
T.
,
2010
, “
Interesting Behavior of Biodiesel Ignition Delay and Combustion Duration
,”
Energy Fuels
,
24
(
8
), pp.
4166
4177
.
13.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.
14.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
15.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
16.
Turner
,
M.
,
Sazhin
,
S.
,
Healey
,
J.
,
Crua
,
C.
, and
Martynov
,
S.
,
2012
, “
A Breakup Model for Transient Diesel Fuel Sprays
,”
Fuel
,
97
, pp.
288
305
.
17.
Babinsky
,
E.
, and
Sojka
,
P.
,
2002
, “
Modeling Drop Size Distributions
,”
Prog. Energy Combust. Sci.
,
28
(
4
), pp.
303
329
.
18.
Sirignano
,
W. A.
,
1983
, “
Fuel Droplet Vaporization and Spray Combustion Theory
,”
Prog. Energy Combust. Sci.
,
9
(
4
), pp.
291
322
.
19.
Sazhin
,
S. S.
,
Elwardany
,
A.
,
Krutitskii
,
P.
,
Castanet
,
G.
,
Lemoine
,
F.
,
Sazhina
,
E.
, and
Heikal
,
M.
,
2010
, “
A Simplified Model for bi-Component Droplet Heating and Evaporation
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4495
4505
.
20.
Ra
,
Y.
, and
Reitz
,
R.
,
2003
, “
The Application of a Multicomponent Droplet Vaporization Model to Gasoline Direct Injection Engines
,”
Int. J. Engine Res.
,
4
(
3
), pp.
193
218
.
21.
Kook
,
S.
, and
Pickett
,
L. M.
,
2012
, “
Liquid Length and Vapor Penetration of Conventional, Fischer–Tropsch, Coal-Derived, and Surrogate Fuel Sprays at High-Temperature and High-Pressure Ambient Conditions
,”
Fuel
,
93
, pp.
539
548
.
22.
Design Institute for Physical Properties, S. b. A.
,
2005–2016
, “DIPPR Project 801–Full Version,”
Design Institute for Physical Property Research/AIChE
, New York.
23.
Gökalp
,
I.
,
1994
, “
Vaporization of Miscible Binary Fuel Droplets Under Laminar and Turbulent Convective Conditions
,”
Atomization Spray
,
4
(6), pp.
661
676
.https://www.cheric.org/research/tech/periodicals/view.php?seq=361865
24.
Lanjekar
,
R. D.
, and
Deshmukh
,
D.
,
2016
, “
A Review of the Effect of the Composition of Biodiesel on NOx Emission, Oxidative Stability and Cold Flow Properties
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1401
1411
.
25.
Sandia National Laboratories
, 2018, “Engine Combustion Network Experimental Data Archive,”
Sandia National Laboratories
, Livermore, CA, accessed Feb., 2018, http://www.sandia.gov/ecn/
26.
Boggavarapu
,
P.
, and
Ravikrishna
,
R. V.
,
2016
, “
Experimental Studies on Evaporating Sprays of Diesel and Jatropha Methyl Ester (JME)
,” 18th Annual Conference on Liquid Atomization and Spray Systems - ILASS Europe, Chennai, India, Nov. 6–9. pp, 241–243.
You do not currently have access to this content.