The design of converging–diverging blades for organic Rankine cycle (ORC) applications widely relies on automated shape-optimization processes. As a result, the optimization produces an adapted-nozzle cascade at the design conditions. However, only few works account for the uncertainties in those conditions and their consequences on cascade performance. The proposed solution, i.e., including uncertainties within the optimization routine, demands an overall huge computational cost to estimate the target output statistic at each iteration of the optimization algorithm. With the aim of understanding if this computational cost is avoidable, we study the impact of uncertainties in the design conditions on the robustness of deterministically optimized profiles. Several optimized blades, obtained with different objective functions, constraints, and design variables, are considered in the present numerical analysis, which features a turbulent compressible flow solver and a state-of-the-art uncertainty-quantification (UQ) method. By including measured field variations in the formulation of the UQ problem, we show that a deterministic shape optimization already improves the robustness of the profile with respect to the baseline configuration. Guidelines about objective functions and blade parametrizations for deterministic optimizations are also provided. Finally, a novel methodology to estimate the mass-flow-rate probability density function (PDF) for choked supersonic turbines is proposed, along with a robust reformulation of the constraint problem without increasing the computational cost.

References

References
1.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.
2.
Macchi
,
E.
,
2017
, “
1—Theoretical Basis of the Organic Rankine Cycle
,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
and
M.
Astolfi
, eds.,
Woodhead Publishing
, Sawston, UK, pp.
3
24
.
3.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.
4.
Macchi
,
E.
, and
Astolfi
,
M.
,
2017
, “
9—Axial Flow Turbines for Organic Rankine Cycle Applications
,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
and
M.
Astolfi
, eds.,
Woodhead Publishing
, Sawston, UK, pp.
299
319
.
5.
Hoffren
,
J.
,
Talonpoika
,
T.
,
Larjola
,
J.
, and
Siikonen
,
T.
,
2002
, “
Numerical Simulation of Real-Gas Flow in a Supersonic Turbine Nozzle Ring
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
395
403
.
6.
Harinck
,
J.
,
Pasquale
,
D.
,
Pecnik
,
R.
,
van Buijtenen
,
J.
, and
Colonna
,
P.
,
2013
, “
Performance Improvement of a Radial Organic Rankine Cycle Turbine by Means of Automated Computational Fluid Dynamic Design
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
6
), pp.
637
645
.
7.
Persico
,
G.
, and
Pini
,
M.
,
2017
, “
8—Fluid Dynamic Design of Organic Rankine Cycle Turbines
,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
and
M.
Astolfi
, eds.,
Woodhead Publishing
, Sawston, UK, pp.
253
297
.
8.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2016
, “
Unsteady Operation of a Highly Supersonic ORC Turbine
,”
ASME J. Turbomach.
,
138
(
12
), p.
121010
.
9.
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Del Greco
,
A. S.
, and
Biagi
,
R.
,
2013
, “
Special Challenges in the Computational Fluid Dynamics Modeling of Transonic Turbo-Expanders
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102701
.
10.
Bufi
,
E. A.
, and
Cinnella
,
P.
,
2018
, “
Preliminary Design Method for Dense-Gas Supersonic Axial Turbine Stages
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
112605
.
11.
Anand
,
N.
,
Vitale
,
S.
,
Pini
,
M.
,
Otero
,
G. J.
, and
Pecnik
,
R.
,
2018
, “
Design Methodology for Supersonic Radial Vanes Operating in Nonideal Flow Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
022601
.
12.
Pasquale
,
D.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2013
, “
Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042308
.
13.
Pini
,
M.
,
Persico
,
G.
,
Pasquale
,
D.
, and
Rebay
,
S.
,
2015
, “
Adjoint Method for Shape Optimization in Real-Gas Flow Applications
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032604
.
14.
Fernandez
,
P. R.
, and
Persico
,
G.
,
2015
, “
Automatic Design of ORC Turbine Profiles Using Evolutionary Algorithms
,”
Third International Seminar on ORC Power System (ORC)
, Brussels, Belgium, Oct. 12–14, Paper No.
133
.http://asme-orc2015.fyper.com/proceedings/documents/133.pdf
15.
Vitale
,
S.
,
Albring
,
T. A.
,
Pini
,
M.
,
Gauger
,
N. R.
, and
Colonna
,
P.
,
2017
, “
Fully Turbulent Discrete Adjoint Solver for Non-Ideal Compressible Flow Applications
,”
J. Global Power Propul. Soc.
,
1
, pp.
252
270
.
16.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
17.
Congedo
,
P. M.
,
Corre
,
C.
, and
Martinez
,
J. M.
,
2011
, “
Shape Optimization of an Airfoil in a BZT Flow With Multiple-Source Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
216
232
.
18.
Congedo
,
P. M.
,
Geraci
,
G.
,
Abgrall
,
R.
,
Pediroda
,
V.
, and
Parussini
,
L.
,
2013
, “
TSI Metamodels-Based Multi-Objective Robust Optimization
,”
Eng. Comput.
,
30
(
8
), pp.
1032
1053
.
19.
Bufi
,
E. A.
,
Cinnella
,
P.
, and
Merle
,
X.
,
2015
, “
Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions
,”
ASME
Paper No. GT2015-42193.
20.
Bufi
,
E. A.
, and
Cinnella
,
P.
,
2017
, “
Robust Optimization of Supersonic ORC Nozzle Guide Vanes
,”
J. Phys.: Conf. Ser.
,
821
, p. 012014.
21.
Zanellato
,
L.
,
Astolfi
,
M.
,
Serafino
,
A.
,
Rizzi
,
D.
, and
Macchi
,
E.
,
2017
, “
Field Performance Evaluation of ORC Geothermal Power Plants Using Radial Outflow Turbines
,”
Energy Procedia
,
129
, pp.
607
614
.
22.
Persico
,
G.
,
2017
, “
Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours
,”
J. Phys.: Conf. Ser.
,
821
(1), p. 012015.
23.
Romei
,
A.
, and
Persico
,
G.
,
2018
, “
Novel Shape Parametrization Technique Applied to the Optimization of a Supersonic ORC Turbine Cascade
,”
ASME
Paper No. GT2018-76732.
24.
Thol
,
M.
,
Dubberke
,
F. H.
,
Baumhögger
,
E.
,
Vrabec
,
J.
, and
Span
,
R.
,
2017
, “
Speed of Sound Measurements and Fundamental Equations of State for Octamethyltrisiloxane and Decamethyltetrasiloxane
,”
J. Chem. Eng. Data
,
62
(
9
), pp.
2633
2648
.
25.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Reference Database 23: Reference Fluid Thermodynamic and Transport Properties–REFPROP, Version 9.1
,” National Institute of Standards and Technology, Gaithersburg, MD,
epub
.https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
26.
Persico
,
G.
,
Mora
,
A.
,
Gaetani
,
P.
, and
Savini
,
M.
,
2012
, “
Unsteady Aerodynamics of a Low Aspect Ratio Turbine Stage: Modeling Issues and Flow Physics
,”
ASME J. Turbomach.
,
134
(
6
), p.
061030
.
27.
Kersaudy
,
P.
,
Sudret
,
B.
,
Varsier
,
N.
,
Picon
,
O.
, and
Wiart
,
J.
,
2015
, “
A New Surrogate Modeling Technique Combining Kriging and Polynomial Chaos Expansions—Application to Uncertainty Analysis in Computational Dosimetry
,”
J. Comput. Phys.
,
286
, pp.
103
117
.
28.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
, “
Gaussian Processes for Machine Learning
,”
Adaptive Computation and Machine Learning
,
MIT Press
,
Cambridge, MA
.
29.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.
30.
Janon
,
A.
,
Klein
,
T.
,
Lagnoux
,
A.
,
Nodet
,
M.
, and
Prieur
,
C.
,
2014
, “
Asymptotic Normality and Efficiency of Two Sobol Index Estimators
,”
ESAIM: Probab. Stat.
,
18
, pp.
342
364
.
31.
Sudret
,
B.
, and
Marelli
,
S.
,
2018
, “
UQLab—A Framework for Uncertainty Quantification in MATLAB
,” Second International Conference on Vulnerability and Risk Analysis and Management (
ICVRAM
), Liverpool, UK, July 13–16, pp. 2554–2563.
32.
Silverman
,
B. W.
,
1986
, “
Density Estimation for Statistics and Data Analysis
,”
CRC Monographs on Statistics and Applied Probability
,
Chapman and Hall
, New York.
33.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
651
.
You do not currently have access to this content.