Large eddy simulations (LES) and experiments (planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) and pressure transducer) have been carried out on a gas turbine burner fitted to an atmospheric combustion rig. This burner, from the Siemens SGT-800 gas turbine, is a low NOx, partially premixed burner, where preheat air temperature, flame temperature, and pressure drop across the burner are kept similar to engine full load conditions. The large eddy simulations are based on a flamelet-generated manifold (FGM) approach for representing the chemistry and the Smagorinsky model for subgrid turbulence. The experimental data and simulation data are in good agreement, both in terms of time averaged and time-resolved quantities. From the experiments and LES, three bands of frequencies of pressure fluctuations with high power spectral density are found in the combustion chamber. The first two bands are found to be axial pressure modes, triggered by coherent flow motions from the burner, such as the flame stabilization location and the precessing vortex core (PVC). The third band is found to be a cross flow directional mode interacting with two of the four combustion chamber walls in the square section of the combustion chamber, triggered from general flow motions. This study shows that LES of real gas turbine components is feasible and that the results give important insight into the flow, flame, and acoustic interactions in a specific combustion system.

References

References
1.
Döbbeling
,
K.
,
Helat
,
J.
, and
Koch
,
H.
,
2007
, “
25 Years of BBC/ABB/Alstom Lean Premixed Combustion Technologies
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
2
12
.
2.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
3.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
4.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.
5.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.
6.
Bauerheim
,
M.
,
Staffelbach
,
G.
,
Worth
,
N. A.
,
Dawson
,
J. R.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2015
, “
Sensitivity of LES-Based Harmonic Flame Response Model for Turbulent Swirled Flames and Impact on the Stability of Azimuthal Modes
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3355
3363
.
7.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2017
, “
Effects of Equivalence Ratio on the Modal Dynamics of Azimuthal Combustion Instabilities
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3743
3751
.
8.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Müller
,
J. D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.
9.
Gicquel
,
L. Y. M.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.
10.
Lantz
,
A.
,
Collin
,
R.
,
Aldén
,
M.
,
Lindholm
,
A.
,
Larfeldt
,
J.
, and
Lörstad
,
D.
,
2015
, “
Investigation of Hydrogen Enriched Natural Gas Flames in a SGT700/800 Burner Using OH PLIF and Chemiluminescence Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031505
.
11.
Selle
,
L.
,
Benoit
,
L.
,
Nicoud
,
T. P. F.
, and
Krebs
,
W.
,
2006
, “
Joint Use of Compressible Large-Eddy Simulation and Helmholtz Solvers for the Analysis of Rotating Modes in an Industrial Swirled Burner
,”
Combust. Flame
,
145
(
1–2
), pp.
194
205
.
12.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.
13.
Hermeth
,
S.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2013
, “
LES Evaluation of the Effects of Equivalence Ratio Fluctuations on the Dynamic Flame Response in a Real Gas Turbine Combustion Chamber
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3165
3173
.
14.
See
,
Y. C.
, and
Ihme
,
M.
,
2015
, “
Large Eddy Simulation of a Partially-Premixed Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1225
1234
.
15.
Bulat
,
G.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2013
, “
Large Eddy Simulation of an Industrial Gas-Turbine Combustion Chamber Using the Sub-Grid PDF Method
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3155
3164
.
16.
Moëll
,
D.
,
Lörstad
,
D.
, and
Bai
,
X.-S.
,
2017
, “
Numerical and Experimental Investigations of the Siemens SGT-800 Burner Fitted to a Water Rig
,”
ASME
Paper No. GT2017-64129
.
17.
Bray
,
K. N. C.
,
1979
, “
The Interaction Between Turbulence and Combustion
,”
Proc. Combust. Inst.
,
17
(
1
), pp.
223
233
.
18.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.
19.
Zhou
,
B.
,
Brackmann
,
C.
,
Li
,
Z.
,
Aldén
,
M.
, and
Bai
,
X.-S.
,
2015
, “
Simultaneous Multi-Species and Temperature Visualization of Premixed Flames in the Distributed Reaction Zone Regime
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1409
1416
.
20.
Zhou
,
B.
,
Brackmann
,
C.
,
Wang
,
Z.
,
Li
,
Z.
,
Richter
,
M.
,
Aldén
,
M.
, and
Bai
,
X.-S.
,
2017
, “
Thin Reaction Zone and Distributed Reaction Zone Regimes in Turbulent Premixed Methane/Air Flames: Scalar Distributions and Correlations
,”
Combust. Flame
,
175
, pp.
220
236
.
21.
Skiba
,
A. W.
,
Wabel
,
T. M.
,
Carter
,
C. D.
,
Hammack
,
S. D.
,
Temme
,
J. E.
,
Lee
,
T.
, and
Driscoll
,
J. F.
,
2017
, “
Reaction Layer Visualization: A Comparison of Two PLIF Techniques and Advantages of kHz-Imaging
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4593
4601
.
22.
Aspden
,
A. J.
,
Day
,
M. S.
, and
Bell
,
J. B.
,
2011
, “
Turbulence-Flame Interactions in Lean Premixed Hydrogen: Transition to the Distributed Burning Regime
,”
J. Fluid Mech.
,
680
, pp.
287
320
.
23.
Carlsson
,
H.
,
2014
, “
Detailed Numerical Simulations of Turbulent Premixed Flames at Moderate and High Karlovitz Numbers
,”
Ph.D. thesis
, Media-Tryck, Lund, Sweden.http://portal.research.lu.se/ws/files/6137003/4732489.pdf
24.
Wang
,
H.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
,
Zhou
,
B.
,
Li
,
Z.
, and
Aldén
,
M.
,
2017
, “
Direct Numerical Simulation of a High Karlovitz Number Laboratory Premixed Jet Flame—An Analysis of Flame Stretch and Flame Thickening
,”
J. Fluid Mech.
,
815
, pp.
511
536
.
25.
Nilsson
,
T.
,
Carlsson
,
H.
,
Yu
,
R.
, and
Bai
,
X. S.
,
2018
, “
Structures of Turbulent Premixed Flames in the High Karlovitz Number Regime—DNS Analysis
,”
Fuel
,
216
, pp.
627
638
.
26.
Moëll
,
D.
,
Lörstad
,
D.
, and
Bai
,
X.-S.
,
2016
, “
Numerical Investigation of Methane/Hydrogen/Air Partially Premixed Flames in the SGT-800 Burner Fitted to a Combustion Rig
,”
Flow, Turbul. Combust.
,
96
(
4
), pp.
987
1003
.
27.
Siemens AG,
2019
, “Siemens SGT-800 Information in Brochure,” Siemens, Munich, Germany, accessed Jan. 17, 2019, http://www.energy.siemens.com/hq/en/fossil-power-generation/gas-turbines/sgt-800.htm
28.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
29.
van Driest
,
E. R.
,
1956
, “
On Turbulent Flow Near a Wall
,”
J. Aeronaut. Sci.
,
23
, pp.
1007
1011
.
30.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(1), pp.
11
137
.
31.
van Oijen
,
J. A.
,
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
ten Boonkkamp
,
J. H. M.
, and
de Goey
,
L. P. H.
,
2016
, “
State-of-the-Art Inpremixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.
32.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
,
Darabiha
,
N.
,
Giquel
,
O.
, and
Veynante
,
D.
,
2010
, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.
33.
Ihme
,
M.
,
Shunn
,
L.
, and
Zhang
,
J.
,
2012
, “
Regularization of Reaction Progress Variable for Application to Flamelet-Based Combustion Models
,”
J. Comput. Phys.
,
231
(
23
), pp.
7715
7721
.
34.
Goldin
,
G.
, and
Zhang
,
Y.
,
2017
, “
A Generalized FGM Progress Variable Weight Optimization Using Heeds
,”
ASME
Paper No. GT2017-64446.
35.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2017
, “
DA 5-D Implementation of FGM for the Large Eddy Simulation of a Stratified Swirled Flame With Heat Loss in a Gas Turbine Combustor
,”
Flow, Turbul. Combust.
,
98
(
3
), pp.
887
922
.
36.
Ihme
,
M.
,
Cha
,
C. M.
, and
Pitsch
,
H.
,
2005
, “
Prediction of Local Extinction and Re-Ignition Effects in Non-Premixed Turbulent Combustion Using a Flamelet/Progress Variable Approach
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
793
800
.
37.
Janicka
,
J.
, and
Kollmann
,
W.
,
1978
, “
A Two-Variables Formalism for the Treatment of Chemical Reactions in Turbulent H2-Air Diffusion Flames
,”
Proc. Combust. Inst.
,
17
(
1
), pp.
421
430
.
38.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.
39.
Poinsot
,
T.
, and
Vaynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
2nd ed.
,
R. T. Edwards Incorporated
, Murarrie, Australia.
40.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
4
, pp.
431
481
.
41.
Wu
,
Y.
,
Carlsson
,
C.
,
Szasz
,
R.
,
Peng
,
L.
,
Fuchs
,
L.
, and
Bai
,
X. S.
,
2016
, “
Effect of Geometrical Contraction on Vortex Breakdown of Swirling Turbulent Flow in a Model Combustor
,”
Fuel
,
170
, pp.
210
225
.
42.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
43.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(1), pp.
1
24
.
44.
Sheen
,
H. I.
,
Chen
,
W. J.
,
Jeng
,
S. Y.
, and
Huang
,
T. L.
,
1996
, “
Correlation of Swirl Number for a Radial-Type Swirl Generator
,”
Exp. Therm. Fluid Sci.
,
12
(
4
), pp.
444
451
.
45.
Polifke
,
W.
,
Fischer
,
A.
, and
Sattelmayer
,
T.
,
2003
, “
Instability of a Premixed Burner With Nonmonotonic Pressure Drop Characteristic
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
20
27
.
46.
Hirsch
,
C.
,
Fanaca
,
D.
,
Alemela
,
R.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
,
2005
, “
Influence of the Swirler Design on Flame Transfer Function of Premixed Flames
,”
ASME
Paper No. GT2005-68195
.
47.
Moëll
,
D.
,
Lörstad
,
D.
, and
Bai
,
X.-S.
,
2018
, “
LES of Hydrogen Enriched Methane/Air Combustion in the SGT-800 Burner at Real Engine Conditions
,”
ASME
Paper No. GT2018-76434
.
You do not currently have access to this content.