The aim of the present work is to evaluate the ability of large eddy simulation (LES) to predict flame shape and structures in a two-stage two-injection burner representative of new generation staged aeronautical engine: the Banc à Injection Multiple pour les Écoulements Réactifs (BIMER) burner. This combustor is a unique design because of an additional parameter, the staging factor, which controls the fuel mass flow rate splitting between the two swirl stages. Experiments conducted on the BIMER combustor at atmospheric pressure and for a constant power output have revealed that the shape of the flame changes with the staging factor; this shape also depends on the staging factor evolution history (SFEH). Targeting a single operating point and three staging situations, the objectives are to prove the ability of our simulation strategy to predict the proper shapes by reproducing these stabilization processes and to participate in their explanation, using numerical post-treatments. After validation through comparisons with experiments, our study focuses on these three configurations, two of them only differing by their SFEH. Remarkably, correct flame shapes are obtained numerically for the same operating point, fuel staging factors and SFEH. Qualitative and quantitative comparisons show very satisfactory agreement. In a second step, the three flame shapes are analyzed in depth. The key role played by the central and corner recirculation zones in the flames' existence and stabilization processes is emphasized. An original composition space analysis highlights the combustion regimes observed in these three cases, confirming the distinct stabilization scenarios proposed here for the three operating points.

References

References
1.
Lefebvre
,
A.
,
1999
,
Gas Turbine Combustion
,
2nd ed.
,
Taylor and Francis
,
Philadelphia, PA
.
2.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
3.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.
4.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Prop. Power
,
19
(
5
), pp.
722
734
.
5.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(Progress in Astronautics and Aeronautics, Vol. 210),
American Institute of Aeronautics and Astronautics
, Reston, VA.
6.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.
7.
Providakis
,
T.
,
2013
, “
Compétition entre structures aérodynamiques et modes acoustiques dans une flamme swirlée: Influence de la répartition de carburant
,” Ph.D. thesis, Ecole Centrale Paris, Châtenay-Malabry, France.
8.
Jaegle
,
F.
,
Senoner
,
J.-M.
,
Garcia
,
M.
,
Bismes
,
F.
,
Lecourt
,
R.
,
Cuenot
,
B.
, and
Poinsot
,
T.
,
2011
, “
Eulerian and Lagrangian Spray Simulations of an Aeronautical Multipoint Injector
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2099
2107
.
9.
Providakis
,
T.
,
Zimmer
,
L.
,
Scouflaire
,
P.
, and
Ducruix
,
S.
,
2012
, “
Characterization of the Acoustic Interactions in a Two-Stage Multi-Injection Combustor Fed With Liquid Fuel
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111503
.
10.
Providakis
,
T.
,
Zimmer
,
L.
,
Scouflaire
,
P.
, and
Ducruix
,
S.
,
2013
, “
Characterization of the Coherent Structures in Swirling Flames Stabilized in a Two-Stage Multi-Injection Burner: Influence of the Staging Factor
,”
C. R. Mec.
,
341
(
1–2
), pp.
4
14
.
11.
Renaud
,
A.
,
Ducruix
,
S.
,
Scouflaire
,
P.
, and
Zimmer
,
L.
,
2015
, “
Flame Shape Transition in a Swirl Stabilised Liquid Fueled Burner
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3365
3372
.
12.
Renaud
,
A.
,
Ducruix
,
S.
, and
Zimmer
,
L.
,
2017
, “
Bistable Behaviour and Thermo-Acoustic Instability Triggering in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
3
, pp.
3899
3906
.
13.
Cheneau
,
B.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2015
, “
Large Eddy Simulations of a Liquid Fuel Swirl Burner: Flame Characterization for Pilot and Multipoint Injection Strategies
,”
ASME
Paper No. GT2015-42821.
14.
Cheneau
,
B.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2018
, “
Characterization of the Hysteresis Cycle in a Two-Stage Liquid-Fueled Swirled Burner Through Numerical Simulation
,”
Proc. Combust. Inst.
, (in press).
15.
Barbosa
,
S.
,
Scouflaire
,
P.
, and
Ducruix
,
S.
,
2009
, “
Time Resolved Flowfield, Flame Structure and Acoustic Characterization of a Staged Multi-Injection Burner
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2965
2972
.
16.
Renaud
,
A.
,
2015
, “
High-Speed Diagnostics for the Study of Flame Stabilization and Transient Behaviour in a Swirled Burner With Variable Liquid-Fuel Distribution
,” Ph.D. thesis, Université Paris-Saclay, Châtenay-Malabry, France.
17.
Albrecht
,
P.
,
Bade
,
S.
,
Lacarelle
,
A.
,
Paschereit
,
C. O.
, and
Gutmark
,
E.
,
2010
, “
Instability Control by Premixed Pilot Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041501
.
18.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High Pressure Burner
,”
J. Fluid Mech.
,
570
, pp.
17
46
.
19.
Roux
,
S.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Meier
,
U.
, and
Bérat
,
C.
,
2005
, “
Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis, and Large Eddy Simulations
,”
Combust. Flame
,
141
(
1–2
), pp.
40
54
.
20.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
21.
Senoner
,
J.-M.
,
Sanjosé
,
M.
,
Lederlin
,
T.
,
Jaegle
,
F.
,
García
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
,
Gicquel
,
L.
,
Pitsch
,
H.
, and
Poinsot
,
T.
,
2009
, “
Eulerian and Lagrangian Large-Eddy Simulations of an Evaporating Two-Phase Flow
,”
C. R. Méc.
,
337
(
6–7
), pp.
458
468
.
22.
Sanjosé
,
M.
,
Senoner
,
J.-M.
,
Jaegle
,
F.
,
Cuenot
,
B.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2011
, “
Fuel Injection Model for Euler-Euler and Euler-Lagrange Large-Eddy Simulations of an Evaporating Spray Inside an Aeronautical Combustor
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
514
529
.
23.
Franzelli
,
B.
,
Vié
,
A.
,
Boileau
,
M.
,
Fiorina
,
B.
, and
Darabiha
,
N.
,
2016
, “
Large Eddy Simulation of Swirled Spray Flame Using Detailed and Tabulated Chemical Descriptions
,”
Flow, Turbul. Combust.
,
98
(
2
), pp.
633
661
.
24.
Poinsot
,
T.
, and
Veynante
,
D.
,
2011
,
Theoretical and Numerical Combustion
,
Edwards
,
Irvine, CA
.
25.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
26.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene–Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.
27.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.
28.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion—Part II: Dynamic Formulation
,”
Combust. Flame
,
131
(
1–2
), pp.
181
197
.
29.
Moreau
,
M.
,
Simonin
,
O.
, and
Bédat
,
B.
,
2010
, “
Development of Gas-Particle Euler-Euler LES Approach: A Priori Analysis of Particle Sub-Grid Models in Homogeneous Isotropic Turbulence
,”
Flow, Turbul. Combust.
,
84
(
2
), pp.
295
324
.
30.
Vié
,
A.
,
Jay
,
S.
,
Cuenot
,
B.
, and
Massot
,
M.
,
2013
, “
Accounting for Polydispersion in the Eulerian Large Eddy Simulation of the Two-Phase Flow in an Aeronautical-Type Burner
,”
Flow, Turbul. Combust.
,
90
(
3
), pp.
545
581
.
31.
Hannebique
,
G.
,
Sierra
,
P.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2013
, “
Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner
,”
Flow, Turbul. Combust.
,
90
(
2
), pp.
449
469
.
32.
Lancien
,
T.
,
Dumont
,
N.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
,
Gicquel
,
O.
, and
Vicquelin
,
R.
,
2016
, “
Uncertainty Quantification of Injected Droplet Size in Mono-Dispersed Eulerian Simulations
,”
Nineth International Conference on Multiphase Flow
, Firenze, Italy, May, pp.
1
6
.
33.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Vdi Zeitung
,
77
, pp.
318
320
.
34.
Abramzon
,
B.
, and
Sirignano
,
W.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.
35.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
36.
Franzelli
,
B.
,
Vié
,
A.
,
Fiorina
,
B.
, and
Darabiha
,
N.
,
2013
, “
Large Eddy Simulation of Swirling Kerosene/Air Spray Flame Using Tabulated Chemistry
,”
ASME
Paper No. GT2013-94451.
37.
Bilger
,
R.
,
Starner
,
S.
, and
Kee
,
R.
,
1990
, “
On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
.
You do not currently have access to this content.