The role of temperature on deposition in gas turbine internal cooling geometries is investigated. Single impingement cones are developed by an oversized (6 mm) impinging jet over a range of temperatures and flow velocities using 0–5 μm Arizona road dust (ARD). Cone size was found to increase with increasing temperature and decrease with increasing velocity. Capture efficiency and cone angle effects are presented, and packing factor (PF) data are used as a metric to determine if the contact area (Acont) for adhesion explains the trends seen with temperature. It is systematically demonstrated that the surface free energy (γ) is likely a first-order function of temperature in internal deposition for the range of temperatures investigated. Candidate physical mechanisms that may cause increased adhesive force at elevated temperatures are identified. Temperature-dependent adhesion is added to the Ohio State University (OSU) deposition model which is then used with a simplified morphing approach to match temperature-induced blockage patterns in a vane leading edge cooling experiment. This process is improved upon using a full mesh morphing routine and matching two of the experimental deposition cones at varied flow temperatures. The added fidelity that mesh morphing affords is demonstrated.

References

References
1.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
2.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Therm. Sci.
,
17
(
2
), pp.
125
133
.
3.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
4.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
5.
Bonilla
,
C.
,
Webb
,
J.
,
Clum
,
C.
,
Casaday
,
B.
,
Brewer
,
E.
, and
Bons
,
J. P.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101901
.
6.
Bowling
,
R. A.
,
1988
, “
A Theoretical Review of Particle Adhesion
,”
Particles on Surfaces 1: Detection, Adhesion, and Removal
,
Springer
,
Boston, MA
, pp.
129
142
.
7.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
8.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2007
, “
Effects of Particle Size, Gas Temperature and Metal Temperature on High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,”
ASME
Paper No. GT2007-27531.
9.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microsphers
,”
Aerosol. Sci. Technol.
,
16
(
1
), pp.
51
64
.
10.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041020
.
11.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane
,”
ASME
Paper No. GT2010-23655.
12.
Barker
,
B.
,
Casaday
,
B.
,
Shankara
,
P.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part II: Computational Modeling
,”
ASME J. Turbomach.
,
135
(
1
), p.
011015
.
13.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
ASME
Paper No. GT2013-95623.
14.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
15.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Montomoli
,
F.
, and
di Mare
,
L.
,
2017
, “
EBFOG: Deposition, Erosion and Detachment on High Pressure Turbine Vanes
,”
ASME
Paper No. GT2017-64526.
16.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.
17.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2004
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
18.
Clum
,
C.
,
Bokar
,
E.
,
Casaday
,
B.
, and
Bons
,
J. P.
,
2014
, “
Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane—Part I: Experimental Investigation
,”
ASME
Paper No. GT2014-27150.
19.
Whitaker
,
S. M.
,
Lundgreen
,
R. K.
, and
Bons
,
J. P.
,
2017
, “
Effects of Metal Surface Temperature on Deposition-Induced Flow Blockage in a Vane Leading Edge Cooling Geometry
,”
ASME
Paper No. GT2017-64946.
20.
Whitaker
,
S.
, and
Bons
,
J.
,
2018
, “
An Improved Particle Impact Model by Accounting for Rate of Strain and Stochastic Rebounds
,”
ASME
Paper No. GT2018-77158.
21.
Casaday
,
B.
,
2013
, “
Investigation of Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane
,”
Ph.D. thesis
, The Ohio State University, Columbus, OH.http://adsabs.harvard.edu/abs/2013PhDT.......428C
22.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2017
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,”
ASME
Paper No. GT2017-64961.
23.
Zoeteweij
,
M. L.
,
van der Donck
,
J. C. J.
, and
Versluis
,
R.
,
2009
, “
Particle Removal in Linear Shear Flow: Model Prediction and Experimental Validation
,”
Adhes. Sci. Technol.
,
23
(
6
), pp.
899
911
.
24.
Rietema
,
K.
,
1991
,
The Dynamics of Fine Powders
,
Elsevier
,
Essex, UK
.
25.
Blum
,
J.
, and
Schräpler
,
R.
,
2004
, “
Structure and Mechanical Properties of High-Porosity Macroscopic Agglomerates Formed by Random Ballistic Deposition
,”
Phys. Rev. Lett.
,
93
(
11
), p.
115503
.
26.
Busnaina
,
A. A.
, and
Elsawy
,
T.
,
2000
, “
The Effect of Relative Humidity on Particle Adhesion and Removal
,”
J. Adhes.
,
74
(
1–4
), pp.
391
409
.
27.
Bird
,
J.
, and
Grabe
,
W.
,
1991
, “
Humidity Effects on Gas Turbine Performance
,”
ASME
Paper No. 91-GT-329.
28.
Young
,
T.
, III
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.
29.
Forsyth
,
P. R.
,
Gillespie
,
D. R. H.
, and
McGilvray
,
M.
,
2017
, “
Development and Applications of a Coupled Particle Deposition–Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022603
.
You do not currently have access to this content.