A theoretical analysis based on the second law of thermodynamics was conducted for the ammonia/hydrogen/air premixed flames at different initial pressures. The irreversibility causing exergy losses in premixed flames was divided into five parts, namely, heat conduction, mass diffusion, viscous dissipation, chemical reaction, and incomplete combustion, respectively. The results revealed that as the hydrogen percentage in fuel blends increased from 0% to 100%, the total exergy losses decreased. Specifically, the exergy destructions induced by heat conduction and mass diffusion decreased with the increasing hydrogen percentage. The exergy loss induced by incomplete combustion increased with hydrogen addition, as more incomplete combustion products such as H2, H, and OH were generated with the increasing hydrogen percentage. The exergy destruction by chemical reactions first decreased and then increased with the increasing hydrogen percentage, which was attributed to the combination effects of the increased entropy generation rate and reduced flame thickness. Compared to the other four sources, the exergy destruction induced by viscous dissipation was negligible. Furthermore, at the elevated pressure of 5 atm, the effects of hydrogen blending were similar to those at the atmospheric condition. However, the exergy destructions by heat conduction and mass diffusion increased while the exergy destruction by the chemical reaction and the exergy loss by incomplete combustion were both reduced, with the overall exergy loss decreased by 1–2% as the pressure increased from 1 atm to 5 atm.

References

References
1.
Reiter
,
A.
, and
Kong
,
S.
,
2011
, “
Combustion and Emissions Characteristics of Compression-Ignition Engine Using Dual Ammonia-Diesel Fuel
,”
Fuel
,
90
(
1
), pp.
87
97
.
2.
Hisashi
,
N.
, and
Susumu
,
H.
,
2017
, “
Combustion and Ignition Characteristics of Ammonia/Air Mixtures in a Micro Flow Reactor With a Controlled Temperature Profile
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4217
4226
.
3.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3–Air and NH3/CH4–Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.
4.
Grannell
,
S.
,
Assanis
,
D.
,
Bohac
,
S.
, and
Gillespie
,
D.
,
2008
, “
The Fuel Mix Limits and Efficiency of a Stoichiometric, Ammonia, and Gasoline Dual Fueled Spark Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
042802
.
5.
Valera-Medina
,
A.
,
Morris
,
S.
,
Runyon
,
J.
,
Pugh
,
D.
,
Marsh
,
R.
,
Beasley
,
P.
, and
Hughes
,
T.
,
2015
, “
Ammonia, Methane and Hydrogen for Gas Turbines
,”
Energy Procedia
,
75
, pp.
118
123
.
6.
Pochet
,
M.
,
Truedsson
,
I.
,
Foucher
,
F.
,
Jeanmart
,
H.
, and
Contino
,
F.
,
2017
, “
Ammonia-Hydrogen Blends in Homogeneous—Charge Compression-Ignition Engine
,”
SAE
Paper No. 2017-24-0087
.
7.
Ryu
,
K.
,
Zacharakis-Jutz
,
G.
, and
Kong
,
S.
,
2014
, “
Effects of Gaseous Ammonia Direct Injection on Performance Characteristics of a Spark-Ignition Engine
,”
Appl. Energy
,
116
, pp.
206
215
.
8.
Mørch
,
C.
,
Bjerre
,
A.
,
Gottrup
,
M.
,
Sorenson
,
S.
, and
Schramm
,
J.
,
2011
, “
Ammonia/Hydrogen Mixtures in an SI-Engine: Engine Performance and Analysis of a Proposed Fuel System
,”
Fuel
,
90
(
2
), pp.
854
864
.
9.
Dunbar
,
W.
, and
Lior
,
N.
,
1994
, “
Sources of Combustion Irreversibility
,”
Combust. Sci. Tech.
,
103
(
1–6
), pp.
41
61
.
10.
Caton
,
J.
,
2012
, “
Exergy Destruction During the Combustion Process as Functions of Operating and Design Parameters for a Spark-Ignition Engine
,”
Int. J. Energy Res.
,
36
(
3
), pp.
368
384
.
11.
Nishida
,
K.
,
Takagi
,
T.
, and
Kinoshita
,
S.
,
2002
, “
Analysis of Entropy Generation and Exergy Loss During Combustion
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
869
874
.
12.
Chen
,
S.
,
Li
,
J.
,
Han
,
H.
,
Liu
,
Z.
, and
Zheng
,
C.
,
2010
, “
Effects of Hydrogen Addition on Entropy Generation in Ultra-Lean Counter-Flow Methane-Air Premixed Combustion
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3891
902
.
13.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.
14.
Kumar
,
P.
, and
Meyer
,
T.
,
2013
, “
Experimental and Modeling Study of Chemical-Kinetics Mechanisms for H2-NH3-Air Mixtures in Laminar Premixed Jet Flames
,”
Fuel
,
108
, pp.
166
176
.
15.
Ichikawa
,
A.
,
Hayakawa
,
A.
,
Kitagawa
,
Y.
,
Somarathne
,
K.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Hydrogen/Air Premixed Flames at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
40
(
30
), pp.
9570
9578
.
16.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
He
,
Z.
, and
Nagai
,
Y.
,
2014
, “
Study on Using Hydrogen and Ammonia as Fuels: Combustion Characteristics and NOx Formation
,”
Int. J. Energy Res.
,
38
(
9
), pp.
1214
1223
.
17.
Lee
,
J.
,
Lee
,
S.
, and
Kwon
,
O.
,
2010
, “
Effects of Ammonia Substitution on Hydrogen/Air Flame Propagation and Emissions
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11332
11341
.
18.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
DixonLewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
, and
Adigun
,
O.
,
2013
, “
CHEMKIN-PRO 15131, Release 3.6
,” Reaction Design, Inc., San Diego, CA.
19.
Hirschfelder
,
J.
,
Curtiss
,
C.
, and
Bird
,
R.
,
1954
,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
20.
Briones
,
A.
,
Mukhopadhyay
,
A.
, and
Aggarwal
,
S.
,
2009
, “
Analysis of Entropy Generation in Hydrogen-Enriched Methane–Air Propagating Triple Flames
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1074
1083
.
21.
Emadi
,
A.
, and
Emami
,
M.
,
2013
, “
Analysis of Entropy Generation in a Hydrogen-Enriched Turbulent Non-Premixed Flame
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
5961
5973
.
22.
Jiang
,
D.
,
Yang
,
W.
, and
Teng
,
J.
,
2015
, “
Entropy Generation Analysis of Fuel Lean Premixed CO/H2/Air Flames
,”
Int. J. Hydrogen Energy
,
40
(
15
), pp.
5210
5220
.
23.
Zehe
,
M.
,
Gordon
,
S.
, and
McBride
,
B.
,
2002
, “CAP: A Computer Code for Generating Tabular Thermodynamic Functions From NASA Lewis Coefficients,”
National Aeronautics and Space Administration, Glenn Research Center
,
Cleveland, OH
, Report No.
NASA/TP-2001- 210959/REV1
.https://www.grc.nasa.gov/www/CEAWeb/TP-2001-210959-REV1.pdf
24.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
25.
Saxena
,
S.
,
Bedoya
,
I.
,
Shah
,
N.
, and
Phadke
,
A.
,
2013
, “
Understanding Loss Mechanisms and Identifying Areas of Improvement for HCCI Engines Using Detailed Exergy Analysis
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091505
.
26.
Yan
,
F.
, and
Su
,
W.
,
2014
, “
Numerical Study on Exergy Losses of n-Heptane Constant-Volume Combustion by Detailed Chemical Kinetics
,”
Energy Fuels
,
28
(
10
), pp.
6635
6643
.
27.
Mamalis
,
S.
,
Babajimopoulos
,
A.
,
Assanis
,
D.
, and
Borgnakke
,
C.
,
2014
, “
A Modeling Framework for Second Law Analysis of Low-Temperature Combustion Engines
,”
Int. J. Engine Res.
,
15
(
6
), pp.
641
653
.
28.
Vires
,
J.
,
Lowry
,
W.
,
Serinyel
,
Z.
,
Curran
,
H.
, and
Petersen
,
E.
,
2011
, “
Laminar Flame Speed Measurements of Dimethyl Ether in Air at Pressures Upto 10 atm
,”
Fuel
,
90
, pp.
331
338
.
29.
Zhang
,
J.
,
Huang
,
Z.
,
Min
,
K.
, and
Han
,
D.
,
2018
, “
Dilution, Thermal, and Chemical Effects of Carbon Dioxide on the Exergy Destruction in n-Heptane and Iso-Octane Autoignition Processes: A Numerical Study
,”
Energy Fuels
,
32
(
4
), pp.
5559
5570
.
30.
Zhang
,
J.
,
Huang
,
Z.
, and
Han
,
D.
,
2018
, “
Exergy Losses in Auto-Ignition Processes of DME and Alcohol Blends
,”
Fuel
,
229
, pp.
116
125
.
You do not currently have access to this content.