This paper describes results from an experimental study on influences of liquid fuel properties on lean blowout (LBO) limits in an aero-type combustor. In particular, this work aimed to elucidate the roles of fuel chemical and physical properties on LBO. Fuel chemical properties stem from the fuel chemical structure, thus governing chemical kinetic behaviors of oxidation characteristics (e.g., ignition or extinction time scales) and others (e.g., fuel thermal stability or sooting tendencies). Fuel physical properties affect the spray characteristics (e.g., atomization and evaporation rates). Eighteen different fuels, with a wide range of physical and chemical fuel properties, were tested. Several of these fuels were custom blends, developed to break intercorrelations between various physical and chemical properties. Fuel physical and chemical property effects were further separated by measuring blowout boundaries at three air inlet temperatures between 300 and 550 K, enabling variation in vaporization rates. The condition at 300 K corresponds to a temperature that is less than the flash point for most of the studied fuels and, therefore, forming a flammable mixture was challenging in this regime. The opposite scenario occurred at 550 K, where fuel droplets evaporate quickly, and the temperature actually exceeds the auto-ignition temperatures of some of the fuels. At 300 K, the data suggest that blowout is controlled by fuel physical properties, as a correlation is found between the blowout boundaries and the fuel vaporization temperature. At 450 and 550 K, the blowout boundaries correlated well with the derived cetane number (DCN), related to the global chemical kinetic reactivity.

References

References
1.
Colket
,
M.
,
Heyne
,
J.
,
Rumizen
,
M.
,
Gupta
,
M.
,
Edwards
,
T.
,
Roquermore
,
W. M.
,
Andac
,
G.
,
Boehm
,
R.
,
Lovett
,
J.
,
Williams
,
R.
,
Condevaux
,
J.
,
Turner
,
D.
,
Rizk
,
N.
,
Tishkoff
,
J.
,
Li
,
C.
,
Moder
,
J.
,
Friend
,
D.
, and
Sankaran
,
V.
,
2017
, “
Overview of the National Jet Fuels Combustion Program
,”
AIAA J.
,
55(
4), pp.
1
18
.
2.
Longwell
,
J. P.
,
Frost
,
E. E.
, and
Weiss
,
M. A.
,
1953
, “
Flame Stability in Bluff Body Recirculation Zones
,”
Ind. Eng. Chem.
,
45
(
8
), pp.
1629
1633
.
3.
Zukoski
,
E. E.
,
1954
, “
Flame Stabilization on Bluff Bodies at Low and Intermediate Reynolds Numbers
,” California Institute of Technology, Pasadena, CA.
4.
Zhang
,
Q.
,
Noble
,
D. R.
, and
Lieuwen
,
T.
,
2007
, “
Characterization of Fuel Composition Effects in H2/CO/CH4 Mixtures Upon Lean Blowout
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
688
694
.
5.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.
6.
Zhang
,
Q.
,
Shanghogue, S.
,
Shreekrishna
,
Lieuwen, T.
, and
O'Connor, J.
,
2011
, “
Strain Characteristics Near the Flame Attachment Point in a Swirling Flow
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
665
685
.
7.
Potter
,
A. E.
, Jr.
, and
Wong
,
E. L.
,
1958
, “
Effect of Pressure and Duct Geometry on Bluff-Body Flame Stabilization
,” National Advisory Committee on Aeronautics, Cleveland, OH, Report No.
NACA-TN-4381
.https://ntrs.nasa.gov/search.jsp?R=19930085311
8.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
, and
Lieuwen
,
T.
,
2010
, “
Dynamics of Premixed H2/CH4 Flames Under Near Blowoff Conditions
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111502
.
9.
Foley
,
C. W.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
, 2012, “
Analysis and Scalings of Blowoff Limits of 2D and Axisymmetric Bluff Body Stabilized Flames
,”
ASME
Paper No. GT2012-70048.
10.
Won
,
S. H.
,
Haas
,
F. M.
,
Dooley
,
S.
,
Edwards
,
T.
, and
Dryer
,
F. L.
,
2017
, “
Reconstruction of Chemical Structure of Real Fuel by Surrogate Formulation Based Upon Combustion Property Targets
,”
Combust. Flame
,
183
, pp.
39
49
.
11.
Lefebvre
,
A.
,
1985
, “
Fuel Effects on Gas Turbine Combustion—Ignition, Stability, and Combustion Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
24
37
.
12.
Mellor
,
A.
,
1980
, “
Semi-Empirical Correlations for Gas Turbine Emissions, Ignition, and Flame Stabilization
,”
Prog. Energy Combust. Sci.
,
6
(
4
), pp.
347
358
.
13.
Burger
,
V.
,
Yates
,
A.
, and
Viljoen
,
C.
,
2012
, “
Influence of Fuel Physical Properties and Reaction Rate on Threshold Heterogeneous Gas Turbine Combustion
,”
ASME
Paper No. GT2012-68153.
14.
Burger
,
V.
,
Yates
,
A.
,
Moxbach
,
T.
, and
Gunasekaran
,
B.
,
2014
, “
Fuel Influence on Targeted Gas Turbine Combustion Properties—Part II: Detailed Results
,”
ASME
Paper No. GT2014-25105.
15.
Mosbach
,
T.
,
Burger
,
V.
, and
Gunasekaran
,
B.
,
2015
, “
Fuel Composition Influence on Gas Turbine Ignition and Combustion Performance
,”
ASME
Paper No. GT2015-43020.
16.
Peters
,
J.
,
1987
, “
Current Gas Turbine Combustion and Fuels Research and Development
,”
ASME
Paper No. 87-GT-107.
17.
Grohmann
,
J.
,
Rauch
,
B.
,
Kathrotia
,
T.
,
Meier
,
W.
, and
Aigner
,
M.
,
2018
, “
Influence of Single-Component Fuels on Gas-Turbine Model Combustor Lean Blowout
,”
J. Propul. Power
,
34
(1), pp.
97
107
.
18.
Rock
,
N.
,
Chterev
,
I.
,
Smith
,
T.
,
Ek
,
H.
,
Emerson
,
B.
,
Noble
,
D. R.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2016
, “
Reacting Pressurized Spray Combustor Dynamics—Part 1: Fuel Sensitivities and Blowoff Characterization
,”
ASME
Paper No. GT2016-56346.
19.
Rock
,
N.
,
Chterev
,
I.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Blowout Sensitivities in a Liquid Fueled Combustor: Fuel Composition and Preheat Temperature Effects
,”
ASME
Paper No. GT2017-63305.
20.
Colket
,
M.
,
Zeppieri
,
S.
,
Dai
,
Z.
, and
Hautman
,
D.
,
2012
, “
Fuel Research at UTRC
,”
Multi-Agency Coordinating Council for Combustion Research Fifth Annual Fuel Research Meeting
, Livermore, CA, Sept. 17–20.
21.
Stouffer
,
S.
,
Hendershott
,
T.
,
Monfort
,
J.
,
Diemer
,
J.
,
Corporan
,
E.
,
Wrzesinski
,
P.
, and
Caswell
,
A.
,
2017
, “
Lean Blowout and Ignition Characteristics of Conventional and Surrogate Fuels Measured in a Swirl Stabilized Combustor
,”
AIAA
Paper No. 2017-1954.
22.
Won
,
S. H.
,
Veloo
,
P. S.
,
Dooley
,
S.
,
Santner
,
J.
,
Haas
,
F. M.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2016
, “
Predicting the Global Combustion Behaviors of Petroleum-Derived and Alternative Jet Fuels by Simple Fuel Property Measurements
,”
Fuel
,
168
, pp.
34
46
.
23.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Sung
,
C. H.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Santoro
,
R. J.
, and
Litzinger
,
T. A.
,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.
24.
Dooley
,
S.
,
Won
,
S. H.
,
Heyne
,
J.
,
Farouk
,
T. I.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Hui
,
X.
,
Sung
,
C. H.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Iyer
,
V.
,
Iyer
,
S.
,
Litzinger
,
T. A.
,
Santoro
,
R. J.
,
Malewicki
,
T.
, and
Brezinsky
,
K.
,
2012
, “
The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena
,”
Combust. Flame
,
159
(
4
), pp.
1444
1466
.
25.
Dooley
,
S.
,
Won
,
S. H.
,
Jahangirian
,
S.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
The Combustion Kinetics of a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, Experimentally Validated Surrogate Fuel
,”
Combust. Flame
,
159
(
10
), pp.
3014
3020
.
26.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2014
, “
A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel
,”
Combust. Flame
,
161
(
6
), pp.
1489
1498
.
27.
Pitz
,
W. J.
, and
Mueller
,
C. J.
,
2011
, “
Recent Progress in the Development of Diesel Surrogate Fuels
,”
Prog. Energy Combust. Sci.
,
37
(
3
), pp.
330
350
.
28.
Cohen
,
J.
, and
Rosfjord
,
T.
,
1993
, “
Influences on the Sprays Formed by High-Shear Fuel Nozzle/Swirler Assemblies
,”
J. Propul. Power
,
9
(
1
), pp.
16
27
.
29.
Edwards
,
J. T.
,
2017
, “
Reference Jet Fuels for Combustion Testing
,”
AIAA
Paper No. 2017-0146.
30.
Heyne
,
J.
,
Colket
,
M.
,
Gupta
,
M.
,
Jardines
,
A.
,
Moder
,
J.
,
Edwards
,
J. T.
,
Roquermore
,
W. M.
,
Li
,
C.
, and
Rumizen
,
M.
,
2017
, “
Year 2 of the National Jet Fuels Combustion Program: Towards a Streamlined Alternative Jet Fuels Certification Process
,”
AIAA
Paper No. 2017-0145.
31.
Heyne
,
J. S.
,
Peiffer
,
E.
,
Colket
,
M. B.
,
Jardines
,
A.
,
Shaw
,
C.
,
Moder
,
J. P.
,
Roquemore
,
W. M.
,
Edwards
,
J. T.
,
Li
,
C.
,
Rumizen
,
M.
, and
Gupta
,
M.
,
2018
, “
Year 3 of the National Jet Fuels Combustion Program: Practical and Scientific Impacts of Alternative Jet Fuel Research
,”
AIAA
Paper No. 2018-1667.
32.
Luning Prak
,
D. J.
,
Hope Jones
,
M.
,
Trulove
,
P.
,
McDaniel
,
A. M.
,
Dickerson
,
T.
, and
Cowart
,
J. S.
,
2015
, “
Physical and Chemical Analysis of Alcohol-to-Jet (ATJ) Fuel and Development of Surrogate Fuel Mixtures
,”
Energy Fuels
,
29
(
6
), pp.
3760
3769
.
33.
Dooley
,
S.
,
Heyne
,
J.
,
Won
,
S. H.
,
Dievart
,
P.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2014
, “
Importance of a Cycloalkane Functionality in the Oxidation of a Real Fuel
,”
Energy Fuels
,
28
(
12
), pp.
7649
7661
.
34.
Burger
,
V.
,
2017
, “
The Influence of Fuel Properties on Threshold Combustion in Aviation Gas Turbine Engines
,” University of Cape Town, Cape Town, South Africa.
35.
Chterev
,
I.
,
Rock
,
N.
,
Ek
,
H.
,
Smith
,
T.
,
Emerson
,
B.
,
Noble
,
D. R.
,
Mayhew
,
E.
,
Lee
,
T.
,
Jiang
,
N.
, and
Roy
,
S.
,
2016
, “
Reacting Pressurized Spray Combustor Dynamics—Part 2: High Speed Planar Measurements
,”
ASME
Paper No. GT2016-56345.
36.
Chterev
,
I.
,
Rock
,
N.
,
Ek
,
H.
,
Emerson
,
B.
,
Seitzman
,
J.
,
Jiang
,
N.
,
Roy
,
S.
,
Lee
,
T.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Simultaneous Imaging of Fuel, OH, and Three Component Velocity Fields in High Pressure, Liquid Fueled, Swirl Stabilized Flames at 5 kHz
,”
Combust. Flame
,
186
, pp.
150
165
.
37.
Foley
,
C.
,
Chterev
,
I.
,
Noble
,
D. R.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Shear Layer Flame Stabilization Sensitivities in a Swirling Flow
,”
Int. J. Spray Combust. Dyn.
,
9
(
1
), pp.
3
18
.
38.
Tyliszczak
,
A.
,
Cavaliere
,
D. E.
, and
Mastorakos
,
E.
,
2014
, “
LES/CMC of Blow-Off in a Liquid Fueled Swirl Burner
,”
Flow, Turbul. Combust.
,
92
(
1–2
), pp.
237
267
.
39.
Esclapez
,
L.
,
Ma
,
P.
, and
Ihme
,
M.
,
2015
, “
Large-Eddy Simulation of Fuel Effect on Lean Blow-Out in Gas Turbines
,” Annual Research Briefs, Stanford Center for Turbulence Research, Stanford, CA.
40.
Won
,
S. H.
,
Dooley
,
S.
,
Dryer
,
F. L.
, and
Ju
,
Y.
,
2012
, “
A Radical Index for the Determination of the Chemical Kinetic Contribution to Diffusion Flame Extinction of Large Hydrocarbon Fuels
,”
Combust. Flame
,
159
(
2
), pp.
541
551
.
41.
Zeuthen
,
E. D.
, and
Blunck
,
D. L.
,
2017
, “
Radiation Emissions From Turbulent Diffusion Flames Burning Vaporized Jet and Jet-Like Fuels
,”
Energy Fuels
,
31
(
12
), pp.
14150
14160
.
You do not currently have access to this content.