In order to further study the effects of the target channel shape on the cooling performance of the double swirl cooling (DSC), five double swirl channels formed by two overlapping elliptic cylinders with different length ratio between the vertical semi-axis and the horizontal semi-axis are applied. Numerical studies are carried out under three Reynolds numbers. The flow characteristics and heat transfer performance of five DSC cases are compared with the benchmark impingement cooling case. The flow losses, cross-flow development, generated vortices, and velocity distributions inside target channels are illustrated, analyzed, and compared. The spanwise averaged Nusselt number, Nusselt number distributions, and thermal performance are discussed and compared. Results indicate that the largest length ratio between the vertical semi-axis and the horizontal semi-axis of the target channel yields the lowest flow loss, largest overall averaged Nusselt number, and best thermal performance. With the decrease in the length ratio, the heat transfer distribution on the target surface becomes more uniform. The maximum enhancement of overall averaged Nusselt number and thermal performance in DSC is about 30% and 33%, respectively.

References

References
1.
Han
,
J. C.
, and
Wright
,
L. M.
,
2006
,
Enhanced Internal Cooling of Turbine Blades and Vanes: The Gas Turbine Handbook
, Vol.
4
, U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL), The Albany, OR, pp.
1
5
.
2.
Wang
,
Z.
, and
Corral
,
R.
,
2017
, “
Numerical Study of Effect of Wall Heating Conditions on Heat Transfer Performance of Internal Cooling Channel
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Stockholm, Sweden, Apr. 3–7, Paper No.
ETC2017-357
.http://oa.upm.es/46012/1/INVE_MEM_2017_245276.pdf
3.
Zhang
,
F.
,
Wang
,
X.
, and
Li
,
J.
,
2015
, “
Effects of Coolants on the Flow and Heat Transfer Characteristics in a Non-Rotating and Rotating Two-Pass Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
91
, pp.
390
400
.
4.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part I: Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
5.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2000
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME
Paper No. 2000-GT-0222
.
6.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
7.
Andrei
,
L.
,
Carcasci
,
C.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2013
, “
Heat Transfer Measurements in a Leading Edge Geometry With Racetrack Holes and Film Cooling Extraction
,”
ASME J. Turbomach.
,
135
(
3
), p.
031020
.
8.
Carcasci
,
C.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Ohlendorf
,
N.
,
2014
, “
Experimental Investigation of a Leading Edge Cooling System With Optimized Inclined Racetrack Holes
,”
ASME
Paper No. GT2014-26219
.
9.
Liu
,
Z.
, and
Feng
,
Z.
,
2011
, “
Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4949
4959
.
10.
Sharif
,
M. A. R.
, and
Mothe
,
K. K.
,
2010
, “
Parametric Study of Turbulent Slot-Jet Impingement Heat Transfer From Concave Cylindrical Surfaces
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
428
442
.
11.
Glezer
,
B.
,
Moon
,
H. K.
, and
O'Connell
,
T.
,
1996
, “
A Novel Technique for the Internal Blade Cooling
,”
ASME
Paper No. 96-GT-181
.
13.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
1998
, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,”
ASME
Paper No. 98-GT-466
.
14.
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
2000
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
375
385
.
15.
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Thambu
,
R.
,
Babinchak
,
B. T.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
1997
, “
Flow Phenomena in Swirl Chambers
,”
ASME
Paper No. 97-GT-530
.
16.
Jiang
,
Y.
,
Zheng
,
Q.
,
Yue
,
G.
,
Dong
,
P.
, and
Jiang
,
Y.
,
2014
, “
Numerical Investigation of Swirl Cooling Heat Transfer Enhancement on Blade Leading Edge by Adding Water Mist
,”
ASME
Paper No. GT2014-25697
.
17.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Harvey
,
N. W.
,
2006
, “
Measurement of Heat Transfer Coefficient Distributions and Flow Field in a Model of a Turbine Blade Cooling Passage With Tangential Injection
,”
ASME
Paper GT2006-90352
.
18.
Liu
,
Z.
,
Feng
,
Z. P.
, and
Song
,
L. M.
,
2011
, “
Numerical Study of Flow and Heat Transfer Characteristics of Swirl Cooling on Leading Edge Model of Gas Turbine Blade
,”
ASME
Paper No. GT2011-46125
.
19.
Liu
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2013
, “
Numerical Study on the Effect of Jet Slot Height on Flow and Heat Transfer of Swirl Cooling in Leading Edge Model for Gas Turbine Blade
,”
ASME
Paper No. GT2013-94819
.
20.
Kusterer
,
K.
,
Lin
,
G.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Heat Transfer Enhancement for Gas Turbine Internal Cooling by Application of Double Swirl Cooling Chambers
,”
ASME
Paper No. GT2013-94774
.
21.
Kusterer
,
K.
,
Lin
,
G.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2014
, “
Leading Edge Cooling of a Gas Turbine Blade With Double Swirl Chambers
,”
ASME
Paper No. GT2014-25851
.
22.
Lin
,
G.
,
Kusterer
,
K.
,
Ayed
,
A. H.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2015
, “
Numerical Investigation on Heat Transfer in an Advanced New Leading Edge Impingement Cooling Configuration
,”
Propul. Power Res.
,
4
(
4
), pp.
179
189
.
23.
Kusterer
,
K.
,
Lin
,
G.
,
Sugimoto
,
T.
,
Bohn
,
D.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2015
, “
Novel Gas Turbine Blade Leading Edge Cooling Configuration Using Advanced Double Swirl Chambers
,”
ASME
Paper No. GT2015-42400
.
24.
Kusterer
,
K.
,
Bühler
,
P.
,
Lin
,
G.
,
Sugimoto
,
T.
,
Bohn
,
D.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2016
, “
Conjugate Heat Transfer Analysis of a Blade Leading Edge Cooling Configuration Using Double Swirl Chambers
,”
ASME
Paper No. GT2016-56937
.
25.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Zheng
,
D.
,
2018
, “
Effects of Impinging Hole Shapes on Double Swirl Cooling Performance at Gas Turbine Blade Leading Edge
,”
ASME
Paper No. GT2018-75445
.
26.
Yang
,
L.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Experimental and Numerical Investigation of Impingement Cooling With Spent Flow in the Blade Leading Edge
,”
Fourth International Symposium on Jet Propulsion and Power Engineering, Xi'an, China, Sept. 10–12, Paper No. ISJPPE-2012-A0127
.
27.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
, Vol.
895
,
Hermosa
,
Albuquerque, NM
.
28.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
, “
Jet Array Impingement With Crossflow—Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,” NASA Contractor Report, Department of Mechanical Engineering, Arizona State University, Tempe, AZ, Report No.
3373
.https://ntrs.nasa.gov/search.jsp?R=19810006721
29.
Llucià
,
S.
,
Terzis
,
A.
,
Ott
,
P.
, and
Cochet
,
M.
,
2015
, “
Heat Transfer Characteristics of High Crossflow Impingement Channels: Effect of Number of Holes
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
5
), pp.
560
568
.
30.
Yang
,
L.
,
Ligrani
,
P.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Unsteady Structure and Development of a Row of Impingement Jets, Including Kelvin-Helmholtz Vortex Development
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051201
.
31.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Li
,
Y.
,
2018
, “
Effects of Film Cooling Hole Locations on Flow and Heat Transfer Characteristics of Impingement/effusion Cooling at Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
126
(B), pp.
192
205
.
32.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.
33.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
34.
Fechter
,
S.
,
Terzis
,
A.
,
Ott
,
P.
,
Weigand
,
B.
,
Wolfersdorf
,
J. V.
, and
Cochet
,
M.
,
2013
, “
Experimental and Numerical Investigation of Narrow Impingement Cooling Channels
,”
Int. J. Heat. Mass Transf.
,
67
, pp.
1208
1219
.
35.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M.
, and
Han
,
J. C.
,
2018
, “
Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets
,”
ASME J. Heat Transfer
,
140
(
6
), p.
062201
.
36.
ANSYS Fluent
,
2013
,
ANSYS Fluent Theory Guide 15.0
,
ANSYS
,
Canonsburg, PA
.
37.
San
,
J.
, and
Lai
,
M.
,
2001
, “
Optimum Jet-to-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets
,”
Int. J. Heat Mass Transf.
,
44
(
21
), pp.
3997
4007
.
38.
Terzis
,
A.
,
2016
, “
On the Correspondence Between Flow Structures and Convective Heat Transfer Augmentation for Multiple Jet Impingement
,”
Exp. Fluids
,
57
(
9
), p.
146
.
You do not currently have access to this content.