This work investigated the damage severity of an unmanned aerial vehicle (UAV) ingestion into fan models of a midsized business jet engine. The ingestion of the quadcopter UAV model into the fan was carried out in ls-dyna. The material models used for the quadcopter and the fan were previously validated, and the fan's durability was simulated through simulated bird ingestions. The results of this work show that UAVs will cause significantly more damage than birds due mostly to the hard components typically used in motors, batteries, and cameras. Particular parameters of the ingestion studied include the phase of flight of the plane, impact location and orientation, and fan blade thickness.

References

References
1.
Heimbs
,
S.
,
2011
, “
Computational Methods for Bird Strike Simulations: A Review
,”
Comput. Struct.
,
89
(
23–24
), pp.
2093
2112
.
2.
Sinha
,
S. K.
,
Turner
,
K. E.
, and
Jain
,
N.
,
2011
, “
Dynamic Loading on Turbofan Blades Due to Bird-Strike
,”
ASME J. Eng. Gas Turbines Power
,
133
(12), p. 122504.
3.
Howard
,
S. A.
,
Hammer
,
J. T.
,
Carney
,
K. S.
, and
Pereira
,
M. J.
,
2013
, “
Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades
,” NASA Glenn Research Center, Cleveland, OH, Report.
4.
Song
,
Y.
,
Horton
,
B.
, and
Bayandor
,
J.
,
2017
, “
Investigation of UAS Ingestion Into High-Bypass Engines—Part 1: Bird vs. Drone
,”
AIAA
Paper No. 2017-0186.
5.
Schroeder
,
K.
,
Song
,
Y.
,
Horton
,
B.
, and
Bayandor
,
J.
,
2017
, “
Investigation of UAS Ingestion Into High-Bypass Engines—Part 2: Parametric Drone Study
,”
AIAA
Paper No. 2017-0187.
6.
D'Souza
,
K.
,
Lyons
,
T.
,
Lacy
,
T.
, and
Kota
,
K. R.
,
2017
, “
Volume IV—UAS Airborne Collision Severity Evaluation—Engine Ingestion
,” The Ohio State University, Columbus, OH.
7.
Code of Federal Regulations
,
2011
, “
Aeronautics and Space, Art. 33.76
,”
Vol. 1, Federal Aviation Administration, National Archives and Records Administration's Office of the Federal Register
,
Government Publishing Office, Washington, DC
.
8.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.
9.
FAA
,
2017
, “
FAA Releases Updated Drone Sighting Reports
,” Federal Aviation Administration, Washington, DC, accessed July 17, 2018, https://www.faa.gov/news/updates/?newsId=87565
10.
Andrews
,
T. M.
,
2017
, “
A Commercial Airplane Collided With a Drone in Canada, a First in North America
,” The Washington Post, Washington, DC.
11.
Olivares
,
G.
,
Gomez
,
L.
,
de los Monteros
,
J. E.
,
Baldridge
,
R. J.
,
Zinzuwadia
,
C.
, and
Aldag
,
T.
,
2017
, “
Volume II—UAS Airborne Collision Severity Evaluation—Quadcopter
,” National Institute for Aviation Research, Washington, DC,
Report
http://www.assureuas.org/projects/deliverables/a3/Volume%20I%20-%20UAS%20Airborne%20Collision%20Severity%20Evaluation%20-%20Structural%20Evaluation.pdf.
12.
Cairns
,
D. S.
,
Wood
,
L. A.
, and
Johnson
,
G.
,
2016
, “
UAS Airborne Collision Severity—Projectile and Target Definitions
,” Montana State University, Bozeman, MT.
13.
Sengoz
,
K.
,
Kan
,
S.
, and
Eskandarian
,
A.
,
2015
, “
Development of a Generic Gas-Turbine Engine Fan Blade-Out Full-Fan Rig Model
,” The George Washington FHWA/NHTSA National Crash Analysis Center, Washington, DC.
14.
Goyal
,
V. K.
,
Huertas
,
C. A.
, and
Vasko
,
T. J.
,
2013
, “
Smooth Particle Hydrodynamics for Bird-Strike Analysis Using LS-DYNA
,”
Am. Trans. Eng. Appl. Sci.
,
2
(
2
), pp.
83
107
.https://www.researchgate.net/publication/258630574_Smooth_Particle_Hydrodynamic_Approach_for_Bird-Strike_Analysis_Using_LS-DYNA
15.
Barber
,
J. P.
,
Taylor
,
H. R.
, and
Wilbeck
,
J. S.
,
1978
, “
Bird Impact Forces and Pressures on Rigid and Compliant Targets
,” Airforce Flight Dynamics Laboratory, Dayton, OH,
Report
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/ADA061313.xhtml.
16.
Wilbeck
,
J. S.
,
1978
, “
Impact Behavior of Low Strength Projectiles
,” Air Force Materials Laboratory, Dayton, OH,
Report
https://apps.dtic.mil/dtic/tr/fulltext/u2/a060423.pdf.
17.
McCarthy
,
M. A.
,
Xiao
,
J. R.
,
McCarthy
,
C. T.
,
Kamoulakos
,
A.
,
Ramos
,
J.
,
Gallard
,
J. P.
, and
Melito
,
V.
,
2004
, “
Modeling of Bird Strike on an Aircraft Wing Leading Edge Made From Fibre Metal Laminates—Part 2: Modeling of Impact With SPH Bird Model
,”
Appl. Compos. Mater.
,
11
(
5
), pp.
317
340
.
18.
Livermore Software Technology Corporation
,
2017
, “
LS-DYNA Keyword User's Manual: Volume 2
,”
Livermore Software Technology Corporation
, Livermore, CA.
19.
Flanagan
,
D.
, and
Belytschko
,
T.
,
1981
, “
A Uniform Strain Hexahedron and Quadrilateral With Orthogonal Hourglass Control
,”
Int. J. Numer. Methods Eng.
,
17
(
5
), pp.
679
706
.
20.
Livermore Software Technology Corporation
,
2018
, “
LS-DYNA Theory Manual
,”
Livermore Software Technology Corporation
, Livermore, CA.
21.
Vintilescu
,
I. V.
,
2009
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems Phase II—Part 4: Model Simulation for Ballistic Tests, Engine Fan Blade-Out, and Generic Engine
,” Honeywell Engines, Washington, DC, Report.
22.
Buyuk
,
M.
,
2013
, “
Development of a Tabulated Thermo-Viscoplastic Material Model With Regularized Failure for Dynamic Ductile Failure Prediction of Structures Under Impact Loading
,”
Ph.D. thesis
, The George Washington University, Washington, DC.http://adsabs.harvard.edu/abs/2013PhDT.......251B
23.
Hammer
,
J. T.
,
2012
, “
Plastic Deformation and Ductile Fracture of Ti-6Al-4V Under Various Loading Conditions
,”
Master's thesis
, The Ohio State University, Columbus, OH.https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ETD_SUBID:77447
24.
Haight
,
S.
,
Wang
,
L.
,
Bois
,
P. D.
,
Carney
,
K.
, and
Kan
,
C.-D.
,
2016
, “
Development of a Titanium Alloy Ti-6Al-4V Material Model Used in LS-DYNA
,” George Mason University, The George Washington University, NASA Glenn Research Center, Washington, DC,
Report
http://www.tc.faa.gov/its/worldpac/techrpt/tc15-23.pdf.
25.
Pereira
,
J. M.
,
Revilock
,
D. M.
,
Lerch
,
B. A.
, and
Ruggeri
,
C. R.
,
2013
, “
Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development
,” NASA Glenn Research Center, Cleveland, OH,
Report
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130013684.pdf.
26.
Seidt
,
J.
,
2010
, “
Plastic Deformation and Ductile Fracture of 2024-T351 Aluminum Under Various Loading Conditions
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
27.
Zukas
,
J. A.
,
1980
, “
Impact Dynamics: Theory and Experiment
,” U.S. Army Research and Development Command Ballistic Research Laboratory, Aberdeen, MD, Report.
28.
Rajan
,
S.
,
Mobasher
,
B.
,
Vaidya
,
A.
,
Zhu
,
D.
,
Fein
,
J.
, and
Deivanayagam
,
A.
,
2014
, “
Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase IV
,” Arizona State University, Tempe, AZ,
Report
http://www.tc.faa.gov/its/worldpac/techrpt/TC13-37.pdf.
29.
Pereira
,
J. M.
, and
Revilock
,
D. M.
,
2009
, “
Ballistic Impact Response of Kevlar 49 and Zylon Under Conditions Representing Jet Engine Fan Containment
,”
J. Aerosp. Eng.
,
22
(
3
), pp.
240
248
.
30.
Cowper
,
G.
, and
Symonds
,
P.
,
1958
, “
Strain Hardening and Strain Rate-Effects in the Impact Loading of Cantilever Beams
,” Brown University, Arlington, VA, Report.
31.
Code of Federal Regulations,
2011
, “
Aeronautics and Space, Art. 33.75
,” Vol. 1, Federal Aviation Administration, National Archives and Records Administration's Office of the Federal Register, Government Publishing Office, Washington, DC.
32.
Cordasco
,
D.
, and
Emmerling
,
W.
,
2015
, “
Turbofan Engine System Safety of a UAV Ingestion Hazard
,” Federal Aviation Administration, Washington, DC, Report.
33.
Lawrence
,
C.
, and
Carney
,
K.
,
2001
, “
Simulation of Aircraft Engine Blade-Out Structural Dynamics
,” NASA Glenn Research Center, Cleveland, OH,
Report
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010068555.pdf.
34.
Ohio Supercomputer Center
,
1987
, “Ohio Supercomputer Center,” Ohio Supercomputer Center, Columbus, OH, http://osc.edu/ark:/19495/f5s1ph73
You do not currently have access to this content.